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Abstract. We present a theoretical study of the band structure and Landau
levels in bilayer graphene at low energies in the presence of a transverse
magnetic field and Rashba spin–orbit interaction in the regime of negligible
trigonal distortion. Within an effective low-energy approach the (Löwdin
partitioning theory), we derive an effective Hamiltonian for bilayer graphene
that incorporates the influence of the Zeeman effect, the Rashba spin–orbit
interaction and, inclusively, the role of the intrinsic spin–orbit interaction on the
same footing. Particular attention is paid to the energy spectrum and Landau
levels. Our modeling unveils the strong influence of the Rashba coupling λR in
the spin splitting of the electron and hole bands. Graphene bilayers with weak
Rashba spin–orbit interaction show a spin splitting linear in momentum and
proportional to λR, but scaling inversely proportional to the interlayer hopping
energy γ1. However, at robust spin–orbit coupling λR, the energy spectrum shows
a strong warping behavior near the Dirac points. We find that the bias-induced
gap in bilayer graphene decreases with increasing Rashba coupling, a behavior
resembling a topological insulator transition. We further predict an unexpected
asymmetric spin splitting and crossings of the Landau levels due to the interplay
between the Rashba interaction and the external bias voltage. Our results are
of relevance for interpreting magnetotransport and infrared cyclotron resonance
measurements, including situations of comparatively weak spin–orbit coupling.
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1. Introduction

Graphene and bilayer graphene (BLG) possess very distinctive physical properties [1, 2].
Neglecting interactions, the low-energy quasiparticles in pristine single- and double-layer
graphene obey, respectively, linear and quadratic dispersion laws at the K (K ′) symmetry points
[3–5]. In the presence of a quantizing magnetic field B > 0, the relativistic massless Dirac
fermions of graphene exhibit Landau levels (LLs) non-equidistant in energy, En ∝

√
|n|B, with

n = 0,±1,±2, . . . , the LL index [6]. The latter gives rise to the half integer quantum Hall effect
at room temperature [7], and to the fractional quantum Hall effect at high magnetic fields in the
presence of many-body effects [8, 9]. On the other hand, LLs for BLG show a rather intricate
index sequence instead, with a roughly linear B-field dependence for low LLs and a

√
B for high

LLs [10–12]. At low energies, the LLs in unbiased BLG follow the sequence En ∝
√

|n|(|n| + 1)
for n > 1 with a double degenerate zero-energy level, E0 = 0 for n = 0 [13–15]. Experimentally,
the LLs dipole-allowed transition energies in single-layer graphene and BLG have been studied
in detail by cyclotron resonance [16–18]. Most recently, phonon-mediated inter-LL excitations
were explored by magneto-Raman scattering experiments [19].

The particularly high interest in graphene spin physics is strongly motivated by the
expected prospects of its use in nanoelectronics and spin-based devices for spintronics [20].
In this realm, the role of spin–orbit interaction (SOI) effects in graphene sheets is a topic under
intense scrutiny. Two types of SOI in graphene have been identified: (i) the one induced by
carbon intra-atomic SOI (intrinsic-SOI) and (ii) the SOI coming from the breaking of the space
inversion symmetry of the hexagonal lattice (extrinsic-SOI); this is the so-called Rashba-SOI.
The latter can have different origins, among which is the presence of a substrate, buckling,
ad-atoms or external electric fields.
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The magnitude of the excitation gap η of the intrinsic-SOI in a single layer is predicted
to be very small (0.86–50µeV) [21–27]. Likewise, estimates of the Rashba coupling λR lead
to small values (a few tens of µeV) at typical electric fields (∼ 0.16 mV nm−1) [23–25].
However, recent spin-resolved photoemission experiments in graphene/Au/Ni(111) showed
enhancements of the Rashba coupling as large as 13 meV [28]. The induced distortions by
neutral impurities (ad-atoms) [29, 30] and the interplay of buckling with Rashba-SOI also
yield a significant enhancement of the spin splittings (up to 40 meV) [31]. The role of the
impurities and lattice deformations seems to be crucial for the observed long spin relaxation
times (up to 2 ns in BLG [32]) linked to SOI effects [33, 34], as well as for a non-monotonic
dependence on bias voltage of the spin relaxation times in BLG due to the D’yakonov–Perel’
spin-precession mechanism [35]. Large spin splittings (∼ 0.22 eV) of the graphene π -states
attributed to Rashba-SOI have been reported also in epitaxial graphene on a Ni substrate [36].
In theory, it has been shown that the Rashba-SOI can induce significant changes in the band
structure of graphene [37, 38] as well as in BLG [39].

In graphene monolayers with Rashba coupling, the LLs are described by E (1)
n,µ± = µ

√
E (1)n,±,

(in units of λR), with [37]

E (1)n,± = (2n − 1)0̃2 + 1
2

(
1 ±

√
1 + 4(2n − 1)0̃2 + 40̃4

)
(1)

for n > 2, where 0̃ = h̄vF/ lB|λR|, vF is the Fermi velocity (∼ 106 m s−1), lB =
√

ch̄/eB is the
magnetic length, h̄ is Planck’s constant over 2π , c is the light velocity in vacuum and −e is the
electron charge. Here µ= ± stands for the electron/hole LL branch. The lowest n = 0 is given
by E0 = 0 while the n = 1 level gives rise to three modes: a zero mode E (0)

1 = 0, in addition

to two non-degenerate modes at E1µ = µ
√

1 + 20̃2. Exact solutions for the LLs in monolayer
graphene under the influence of a Zeeman field and SOIs have also been reported recently by
De Martino et al [40].

In this paper, we show within low-energy effective theory that for biased BLG in which the

Rashba effect is the dominant SOI, its LLs must follow E (2)
n,µ± = µ

√
E (2)n,±, with

E (2)n,± = U 2 +
n

2

(
02 + 2n ω2

±

√

4ω4 + 4n ω202 +04
)

(2)

for n > 2, with U the interlayer bias energy, 0 = 2
√

2λRvFh̄/γ1lB and ω = 2v2
Fh̄2/γ1l2

B, with γ1

being the interlayer hopping energy. As occurs in graphene, in BLG with Rashba-SOI we obtain
three modes for n = 1, namely the non-degenerate E (2)

1µ+ = µ
√

U 2 +02 + 2ω2 and E (2)
1−

= −U ,

whereas for n = 0 its eigenvalue also vanishes in the absence of gating, E (2)
0−

= U . Equation (2)
forms one of the main results of this paper.

The aim of this study was to investigate the energy spectrum and the LLs in BLG under
the influence of sizable SOIs of both intrinsic and Rashba types. An effective low-energy
Hamiltonian for BLG that includes both types of SOI and the Zeeman effect is derived within
the Löwdin partitioning theory. Whereas the Rashba-SOI in single-layer graphene is known to
modify its otherwise conic spectrum to a spectrum that includes two zero-gap bands and two
gapped branches of width 2λR (with parabolic shape, similar to unbiased BLG) [37], here, in
contrast, the (unbiased) BLG with Rashba-SOI shows a spin splitting that is linear in momentum
and proportional to λR, but inversely proportional to the interlayer hopping parameter γ1. We
also predict a strong influence of the Rashba-SOI on the warping of the low-energy band
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structure of biased bilayer at a comparatively weak spin–orbit coupling λR. It is found that the
bias-induced gap in BLG decreases when the Rashba strength coupling is increased. It is further
predicted that an unexpected asymmetric spin splitting of the LLs arises due to the interplay
between the Rashba coupling and the external bias voltage.

The remainder of the paper is organized as follows. In section 2, we outline the model and
derivation of the low-energy BLG effective Hamiltonian. The LL spectrum in the presence of
Rashba-SOI is discussed in section 3. The band spectrum properties and the LLs of BLG with
Rashba-SOI are analyzed in detail in sections 4 and 5. A summary of our results is given in
section 6. Additionally, we provide three appendices. In appendix A we outline the derivation
(the Löwdin partitioning theory) of the low-energy Hamiltonian in the presence of intrinsic and
Rashba type SOIs, as well as the Zeeman effect. In appendix B, a detailed description of the
eigenvalues of the low-energy Hamiltonian is given, and finally, in appendix C, the LLs for
BLG with Rashba-SOI are derived.

2. Low-energy effective Hamiltonian for bilayer graphene (BLG)

Here we focus on the derivation of the low-energy effective Hamiltonian for BLG with SOI in
the presence of magnetic field that eventually leads to equation (2). We start by considering a
pile of two graphene layers (BLG) in which the sites A2 of the upper layer 2 lie directly on top of
the B1 sites of the bottom layer 1 (AB-Bernal stacking). In the vicinity of the Dirac K symmetry
point, the effective non-interacting BLG Hamiltonian H0, written in terms of the spin-dependent
basis |9

†
K 〉 = {ψA1↑

, ψA1↓
, ψB1↑

, ψB1↓
, ψA2↑

, ψA2↓
, ψB2↑

, ψB2↓
}, has the 8 × 8 matrix form

H0 =

(
H+ V1

V †
1 H−

)
, H± =


±U 0 γ π† 0

0 ±U 0 γ π†

γ π 0 ±U 0
0 γ π 0 ±U

 , (3)

where π = πx + iπy , π = p + e A/c = (πx , πy) is the canonical momentum, and A is the vector
potential. Here γ ≡ vF = γ0a

√
3/2h̄, with γ0 ∼ 3.1 eV (intra-layer hopping energy) and a =

0.246 nm, is the lattice parameter [1]. The electrostatic potential ±U of the bottom/upper layer
is gate voltage adjustable and opens a gap of 2U in the spectrum [2]. The dominant interlayer
interaction in BLG is described to first approximation by the term

V1 =


−v4π

† 0 γ1 0
0 −v4π

† 0 γ1

v3π 0 −v4π
† 0

0 v3π 0 −v4π
†

 , (4)

where γ1 is the nearest-neighbor (interlayer) hopping energy (∼ 0.1γ0). The terms
proportional to the velocities v3 = γ3a

√
3/2h̄ and v4 = γ4a

√
3/2h̄ arise due to second nearest-

neighbor (interlayer) hopping processes associated with γ3 and γ4 tight-binding parameters,
respectively [15, 41]. The former produces a trigonal warping whose characteristic energy is
E3 =

1
2m∗v2

3 = γ1(γ3/2γ0)
2
∼ 1 meV, with m∗

= γ1/2v2
F being the electron effective mass [15],

while the latter has a yet smaller characteristic energy, E4 =
1
2m∗v2

4 = γ1(γ4/2γ0)
2
∼ 0.2 meV.

Since typically E3,4 � γ1 in BLG, contributions in equation (4) coming from terms with
velocities v3 and v4 are negligible. However, we should note that, when considering Rashba-SOI,
there might be situations in which v3 and v4 may be important, particularly at very weak Rashba
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strengths of the order of E3,4. We would like to mention, nevertheless, that there is experimental
(and theoretical) evidence of Rashba-SOI spin splittings of one order of magnitude [28, 29, 31]
and even larger [36] than the typical distortion energies E3,4. In any case, its inclusion in
the model can be readily incorporated into the general derivation of the reduced effective
Hamiltonian via the Löwdin perturbation theory described in appendix A. The regime in which
there is a possible interplay among the v3,4 terms and Rashba-SOI is beyond the scope of the
present analytical study, and for the sake of clarity and simplicity these trigonal terms will be
disregarded hereafter.

Taking into account explicitly the presence of intrinsic-SOI, Rashba-SOI and Zeeman
splitting, the total eight-band effective Hamiltonian will read

HK = H0 + HR + HI + HZ. (5)

The second term to the right in equation (5) arises due to the influence of an effective electric
field perpendicular to the BLG plane producing a Rashba type SOI. The leading contribution to
the Rashba-SOI Hamiltonian, HR, is modeled as follows:

HR =


0 i λR σ− 0 0

−i λR σ+ 0 0 0
0 0 0 i λR σ−

0 0 −i λR σ+ 0

 , (6)

where λR parameterizes the strength of the intra-layer Rashba-SOI, as in monolayer graphene,
with σ± =

1
2

(
σx ± i σy

)
, with (σx , σy) being the usual 2 × 2 Pauli spin matrices. The intensity

of the Rashba-SOI can be sizable (λR ∼ 10 meV) due, for instance, to the presence of a metallic
substrate [28]. Within tight-binding theory, it is understood that the Rashba-SOI arises because
of the effective nearest-neighbor hopping of two pz orbitals with opposite spins under the
presence of an applied transverse electric field [26].

Recently, it was predicted that λR can be even larger (of a few tens of meV) due to buckling
effects in conjunction with external electric fields [31]. Furthermore, by varying the electric
field, the Rashba parameter can be tuned. A possible inter-layer Rashba spin–orbit coupling of
strength λ⊥

R can, in principle, be present in BLG as well; however, such contributions will be
ignored here because of its predicted weak influence on the energy bands for λ⊥

R/γ0 . 0.3. [39]
Additionally, in the same basis set above, the intrinsic-SOI Hamiltonian for BLG (the third

term on the rhs of equation (5)) shall follow the 4 × 4 matrix form

HI =


η sz 0 0 0

0 −η sz 0 0

0 0 η sz 0

0 0 0 −η sz

 , (7)

with η the intrinsic SOI constant and sz is the spin operator along the z-axis, perpendicular
to the BLG plane. The intrinsic SOI is a second-order tunneling process (within tight-binding
theory), which involves next-nearest-neighbor hopping events of pz electrons of a given spin. As
mentioned in the introduction, the value of the excitation energy η has been inferred to be very
small in monolayer graphene at both K (K ′) symmetry points (. 50µeV) even if one considers
interactions up to first order by including the unoccupied d and higher orbitals [25, 26].
Interestingly, in BLG, taking into account the interlayer overlapping of the π and σ bonds
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yields enhanced values of the intrinsic-SOI: about one order of magnitude larger than in single-
layer graphene (∼0.1 meV) [42]. We would like to emphasize here that such values are still
somewhat weak, compared with those relatively large strengths that reportedly the Rashba
parameter λR can acquire (similar to the values attained in III–V semiconductors). Nevertheless,
for generality, the intrinsic SOI has been incorporated into the present derivation of the low-
energy effective Hamiltonian. This will be helpful when considering BLG in the extreme limit,
i.e. when the intrinsic-SOI η is much stronger than the Rashba-SOI λR parameter (η� λR).
However, we shall concentrate our discussion here on the band structure and LLs of BLG for
the case λR � η; the opposite limit will be treated elsewhere.

The last term in equation (5) arises if an external magnetic field B is present, affecting the
energetics of the quasiparticles in the form of a Zeeman interaction; HZ, for a field perpendicular
to the BLG plane, reads

HZ =1(I ⊗ σz), (8)

where I is a 4 × 4 unit matrix, 21= gµB B is the Zeeman splitting energy, g is the electron
Landé factor and µB is the Bohr magneton. Note that even at relatively high magnetic fields
(B = 10 T), the Zeeman splitting is still somewhat small (1∼ 1.1 meV), while it is practically
negligible at low fields. Note that the condition

η .1� λR≪ γ1 (9)

typically holds at finite fields (B & 0.1 T). This condition will allow us to work safely within
the low-energy theory and derive an effective Hamiltonian for BLG, including the extrinsic
(Rashba)-SOI, intrinsic-SOI and the Zeeman effect on the same footing. We should finally
remark that the total Hamiltonian (5) is valid near the K symmetry point only. For the K ′

point of the Brillouin zone, the Hamiltonian HK ′ =6y HK6
−1
y , with 6y = σy ⊗ I , should be

used instead.

2.1. Low-energy bilayer Hamiltonian

Using the Löwdin partitioning theory [43, 44], the full 8 × 8 Hamiltonian HK can be projected
through a canonical transformation [45] into a 4 × 4 low-energy effective Hamiltonian H in
an appropriate basis (see appendix A). The projected low-energy Hamiltonian can be further
expressed in terms of Kronecker products of 2 × 2 matrices and conveniently separated into the
sum of the Hamiltonians (keeping terms up to 1/γ 2

1 ),

H=H(0) +H(1) +H(2) +O(1/γ 3), (10)

in which the term independent of the interlayer hopping parameter γ1 reads

H(0) = −σz ⊗ (Uσ0 +1σz)− η (σ0 ⊗ σz), (11)

where σz is the z-component of the Pauli matrices and σ0 is the 2 × 2 unit matrix. The dominant
contribution to H is described by the Hamiltonian H(1), given by

H(1) = −
γ 2

γ1

(
0 (π †)2

π2 0

)
⊗ σx +

2i λRγ

γ1

(
0 −π†

π 0

)
⊗ s+, (12)

where we have defined the operator s± =
1
2(σ0 ± σz). Without Rashba-SOI (λR = 0),

equation (12) decouples to the usual effective BLG Hamiltonian obtained within low-energy
theory in the absence of trigonal warping effects [13]. Such a term gives rise to the well-known
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parabolic spectrum of the massive Dirac quasiparticles in BLG. The second term in H(1) is
linear in momentum and can be viewed as a renormalization of the Rashba coefficient due to
the presence of the higher bands. Note that it scales as the inverse of the interlayer hopping
energy γ1.

The remaining terms proportional to 1/γ 2
1 in equation (10) are compacted into the sum

H(2) =
∑4

i=1 h(2)i , with

h(2)1 =
2Uγ 2

γ 2
1

(
π †π 0

0 −ππ †

)
⊗ σ0,

h(2)2 =
UλR

2

γ 2
1

(σz ⊗ s+)+
(1+ η)λ2

R

γ 2
1

(σ0 ⊗ s+),

h(2)3 =
i(2U +1)λR

γ 2
1

(
π 0
0 π †

)
⊗ σ+ + h.c.,

h(2)4 = −
i1λR

γ 2
1

s− ⊗

(
0 −π †

π 0

)
+

i ηλR

γ 2
1

s+ ⊗

(
0 π

−π † 0

)
.

The low-energy effective Hamiltonian H described in equation (10) is valid within the
energy range ε . γ1. Note that it will be fairly sufficient to keep only the leading order
contribution h(2)1 in H(2) given the typical smallness of the ratios λ2

R/γ
2
1 , λR1/γ

2
1 and λR η/γ

2
1

appearing inH(2) together with the assumption U < γ1. Hence the description of the low-energy
(and momentum) effective Hamiltonian will be given by H=H(0) +H(1) + h(2)1 .

If we further neglect the Zeeman and the intrinsic SOI (1= η = 0), the effective bilayer
Hamiltonian with Rashba-SOI written in the atomic basis {ψA2↑

, ψA2↓
, ψB1↑

, ψB1↓
} reduces to

H=


−U + ξπ †π 0 −β (π †)

2 0

0 −U + ξπ †π −iα π†
−β

(
π †
)2

−β π2 iα π U − ξππ † 0
0 −β π2 0 U − ξππ †

 , (13)

where we have defined the parameters ξ = 2U γ̃ 2, α = 2γ̃ λR and β = γ1γ̃
2, with γ̃ = γ /γ1.

2.2. BLG spectrum with the Rashba effect at zero field

Without magnetic field (B = 0), π†
= h̄k− = h̄(kx − i ky) and π = h̄k+ = h̄(kx + i ky) and the

eigenvalues of equation (13) are readily determined by (appendix B)

εµs(k)=
µ

2

√
4 (U − ξk2)2 + k2

(√
α2 + 4k2β2 − s α

)2
(14)

with k =

√
k2

x + k2
y . Here µ= ± describe the electron/hole branch, while s = ± characterizes

its spin chirality. Therefore, the low-energy spectrum consists of four spin-split bands, two
conduction and two valence bands. For the unbias voltage case (U = 0), the spectrum reduces
simply to

ε0
µs(k)=

µ

2
k
(√
α2 + 4β2k2 − s α

)
. (15)
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We note that in contrast with single-layer graphene4, in BLG the Rashba-SOI is induced by
a linear spin splitting in the momentum of the conduction and valence bands, in close analogy
with the Rashba interaction that arises in two-dimensional (2D) electron gases in semiconductor
heterostructures. In addition, we observe that the cyclotron effective mass at the Fermi energy
m(s)

c = k/(∂ ε0
µs/∂ k) turns out to be spin dependent as long as λR 6= 0 following the relation

m(s)
c = m∗

4µ
√
πnλβ

√
1 + 4πnλ2

β

1 + 8πnλ2
β − s

√
1 + 4πnλ2

β

, (16)

with λβ = β/α = γ /2λR, and we have expressed the Fermi wave number in terms of the
2D carrier density via kF =

√
πn. Note that in the limit case λβ → ∞, the cyclotron mass

m(s)
c → µm∗

= µγ1/2v2
F, as one expects for unbiased BLG in the absence of SOI. However,

as the carrier density n → 0, the cyclotron effective mass does not diverge as predicted by tight-
binding models.

The normalized eigenvectors |ψ
(µ)

ks 〉 ofH corresponding to the electron and hole bands µ=

±, respectively, for the case of spin up (s = +) are written in the four-vector form (appendix B)

|ψ
(µ)

k+ 〉 =
1√

1 + (χ (µ)

+ )
2


−i e−2iφ sin(θ/2)χ (µ)+

e−iφ cos(θ/2)χ (µ)+

−i cos(θ/2)
i e−iφ sin(θ/2)

 , (17)

while the normalized eigenvectors for the spin down (s = −) electron/hole bands are
specified by

|ψ
(µ)

k−
〉 =

1√
1 + (χ (µ)

−
)2


i e−2iφ cos(θ/2)χ (µ)−

e−iφ sin(θ/2)χ (µ)−

i sin(θ/2)
i e−iφ cos(θ/2)

 , (18)

in which we have defined the dimensionless parameter

χ (µ)s =

U − ξk2 +µ
√
R2
µs + (U − ξk2)

2

Rµs
, (19)

with θ = tan−1(2βk/α), and φ is the azimuthal angle of the in-plane wave vector, k =

k(cosφ, sinφ). The denominator of equation (19) is explicitlyRµs = µε0
µs(k)= |ε0

µs(k)|, which
implies that R+s =R−s and therefore the relation χ (+)σ χ (−)σ = −1 is always satisfied. Without
external bias voltage (U = 0), the parameter χ (±)σ reduces to ±1 for all k.

2.2.1. Spin and valley polarization. The expectation values of the valley (charge) polarization
and spin orientation are defined as 〈τ 〉µs = 〈ψ

(µ)

ks |τ |ψ
(µ)

ks 〉 and 〈S〉µs = 〈ψ
(µ)

ks |S|ψ
(µ)

ks 〉,
respectively. Here the valley and spin operators are τ = σ ⊗ σ0 and S =

h̄
2 (σ0 ⊗ σ ), with

4 The spectrum in single-layer graphene with Rashba coupling is described by two zero-gap bands and two gapped
bands split by 2λR [37].
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σ = (σx , σy, σz) being the vector of Pauli matrices. Using the results of equations (17) and (18)
the components for the charge polarization lead to the expressions

〈τx〉µs =
2χ (µ)s

(χ
(µ)
s )2 + 1

sin θ cos(2φ), (20)

〈τy〉µs =
2χ (µ)s

(χ
(µ)
s )2 + 1

sin θ sin(2φ), (21)

〈τz〉µs =
(χ (µ)s )2 − 1

(χ
(µ)
s )2 + 1

, (22)

whereas the components of the spin polarization (in units of h̄/2) satisfy

〈Sx〉µs = −s sin θ sin(φ), (23)

〈Sy〉µs = +s sin θ cos(φ), (24)

〈Sz〉µs = s
1 − (χ (µ)s )2

1 + (χ (µ)s )2
cos θ. (25)

As occurs with the standard Rashba-SOI in semiconductors, in BLG the orientation of
the spin polarization in the plane is always perpendicular to the direction of the momentum,
〈S〉 · k = 0. We note also that, in contrast with single-layer graphene, in BLG the dot product
〈S〉 · τ 6= 0 in general. Interestingly, as long as there is a bias voltage present (U 6= 0), both
the spin and valley polarizations have a non-zero component out of the BLG plane (along the
z-axis). However, in the absence of bias voltage (U = 0) the amplitude of the charge and spin
polarization develops k-dependent oscillations. Explicitly, |〈τ 〉| = |〈S〉| = sin θ for all |k| 6= 0,
and vanishes at k = 0, in close analogy with the known result in single-layer graphene [46].
From equations (22)–(24) the spin polarization in the unbiased configuration can be compactly
written as

〈S〉µs =
2 sβ√

α2 + 4β2k2
(ẑ × k); (26)

that is, 〈S〉µs is forced to lie in the BLG plane. Clearly, as the Rashba-SOI coefficient λR → 0,
i.e. α → 0, the magnitude of spin polarization reaches its maximum value, |〈S〉µs| → 1, as the
electron/hole spin is conserved. Finally, we note that equation (26) for the spin orientation
in unbiased BLG is formally identical to that obtained in single-layer graphene with Rashba-
SOI [37].

3. Landau levels (LLs) in BLG with Rashba spin–orbit interaction (SOI)

For a magnetic field B 6= 0 perpendicular to the BLG plane, the operators π and π† do not
commute any longer since its components fail to do so, and of course, care has to be exercised
in their ordering. By making the substitution into equation (13) of the momentum operators in
terms of the Bose operators, π †

=
√

2h̄ a†/ lB and π =
√

2h̄ a/ lB with
[
a, a†

]
= 1, the effective

Hamiltonian in the limit of low bias (U � γ1) takes the form

ĤL = −


U 0 ω (a)2 0
0 U i0a ω (a)2

ω (a†)2 −i0a†
−U 0

0 ω (a†)2 0 −U

 (27)
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with the notation 0 =
√

2h̄ α/ lB and ω = 2h̄2β/ l2
B. The eigenfunctions of ĤL can now be

written in the form |ψn〉 = (c(n−2)
1 |n − 2〉, c(n−1)

2 |n − 1〉, c(n)3 |n〉, c(n+1)
4 |n + 1〉)T, where |n〉 ≡ ξn

are the usual harmonic oscillator eigenfunctions satisfying a†
|n〉 =

√
n + 1|n + 1〉 and a|n〉 =

√
n|n − 1〉. Consequently, one can write the expectation value 〈ψn|ĤL|ψn〉 = 〈φn|Hn|φn〉, with

Hn =

(
−Uσ0 Fn

F†
n Uσ0

)
, (28)

and |φn〉 = (c(n−2)
1 , c(n−1)

2 , c(n)3 , c(n+1)
4 )T satisfying the normalization condition 〈φn|φn〉 = 1, while

Fn = −

(
ω

√
n(n − 1) 0

i0
√

n ω
√

n(n + 1)

)
. (29)

The eigenvalues of (28) lead to the Landau spectrum given by equation (2), which, in the
absence of a bias gate voltage across the layers (U = 0), reads (appendix C)

ε0
n,µ±

=
µ
√

2

√
n02 + 2n2ω2 ± n

√

4ω4 + 4nω202 +04, (30)

for n > 2. In order to gain further physical insight into the behavior of the LLs in BLG, it is
illustrative to analyze the limit cases at zero, weak (large) Rashba-SOI relative to the magnetic
field strength, with and without bias voltage.

3.1. Approximate solutions for U = 0

(i) Zero Rashba-SOI (0 = 0). In the vanishing Rashba-SOI strength limit, equation (30)
reduces to ε0

n,µ±
= µ

√
n(n ± 1) ω0 B, with x0 = eh̄/m∗c, and coincides with the LL

spectrum (double degenerate in spin) reported in the literature for BLG in the absence
of Rashba-SOI. The linear response with B stems from the parabolic dispersion laws of
BLG for this case.

(ii) Weak Rashba-SOI (0/ω� 1). At very weak Rashba-SOI strengths (large fields), the LLs
still evolve approximately linear with B, but shifted by a small energy proportional to λ2

R,
described by

ε0
n,µ±

' µ

(
ω0 B ±

02
0

4ω0

)√
n(n ± 1), µ= ± (31)

with 00 =
√

2ω0/m∗(λR/vF) and n > 2. Since 02
0/4ω0 = λ2

R/γ1, only rather large Rashba-
SOI coefficient (λR ' γ1) strengths give rise to significant broken degeneracies of the
electron/hole LLs as described next in the opposite regime.

(iii) Strong Rashba-SOI (0/ω� 1). Alternatively, in the very strong Rashba-SOI limit (small
fields), the LL level spectrum is well described by ε0

n,µ+ ' µ
√

n 0 = µ00

√
nB and ε0

n,µ−
'

µ(ω2
0/00)

√
n(n2 − 1)B3/2, with n > 2. The change in the field dependence from B1/2 for

the ν = + chiral states to B3/2 for the ν = − states is unique in BLG and gives rise to a
multiplicity of LL crossings as shown later.

In addition, the energy spectra with LL level index n = 1 and 0 are special cases giving rise
to three levels, one at zero energy (ε0− = 0) and two non-degenerate levels for n = 1. In the high-
field limit 0/λR � 1, we obtain E1µ+ ' µ

√
2(02

0/4ω0 +ω0 B), while we obtain E1µ− ' µ00

√
B

in the weak field regime.
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3.2. Approximate solutions for U 6= 0

(i) Zero Rashba-SOI in the ω� U limit. In this case the quantum states should follow

εn,µ± ' µU +
µ

2U
n(n ± 1) ω2

0 B2
; (32)

clearly, in addition to the aperture of an energy gap of 2U between the spin-degenerate
electrons/hole LLs, the presence of the gate voltage induces a deviation from the linear
dependence on B occurring at U = 0, to a parabolic behavior with B instead. This is also
a known result in the literature [11, 12].

(ii) Weak Rashba-SOI in the regime U � ω� 0. Here the LLs still behave quadratic in B but
with a spin-dependent shift linear in B given as

εn,µ± ' µU +
µ n(n ± 1)

2U

(
ω2

0 B2
±
02

0 B

2

)
, (33)

the term proportional to 02
0 is responsible for the anticrossings of the fan spectrum of the

ν = ± states.

(iii) Strong Rashba-SOI in the regime U � 0 � ω. In contrast with the case of U = 0, at very
large Rashba-SOI strengths the LL spectrum follows (to leading order) linear behavior with
B for the positive chirality states (ν = +), whereas for the negative (ν = −) quantum states
it develops a cubic dependence instead. Explicitly, they are given by

εn,µ+ ' µU +
µ02

0

2U
nB, εn,µ− ' µU +

µω4
0

2U02
0

n(n2
− 1)B3. (34)

Such a drastic change in the field dependence of the LLs with different spin chirality states
(ν = ±) will dramatically enhance the degree of their spin splitting and the multiplicity of
the level crossing as studied in the next section.

All of these discussed above hold true for n > 2. The cases n = 0, 1 are treated separately
as in the condition for U = 0. In the limit U � ω� 0 (small Rashba-SOI or large fields)
ε1µ+ ' µ(U +ω2

0 B2/U ) and ε1µ+ ' µ(U +02
0 B/U ) for the large Rashba-SOI (or small Rashba-

SOI) case (U � 0 � ω), while ε1− = −U for both regimes. The case for zero LL index is
ε0− = U , which also holds in both regimes.

3.3. Spin polarization of the LLs

The eigenfunctions of equation (28) for the nth LL of a given electron (hole) band µ in biased
BLG are given in appendix C. From equations (C.18) and the orthogonality of the oscillator
wave functions ξn, it follows that the valley 〈τ (n)〉µν and 〈S(n)〉µν spin polarization lying in
the plane of BLG vanishes identically for all LLs. General expressions for the valley and spin
polarization are provided in equations (C.19) and (C.20). We note that the valley polarization
in the perpendicular direction turns out to be k independent and that, for the unbiased case, it
vanishes for all LLs. Furthermore, the zth component of the spin polarization of the nth LL with
U = 0 reduces to

〈S(n)
z 〉µν = −

ν

2
(cosϑn− + cosϑn+)

= −
2ν ω2

√
4ω2 + 4n ω202 +04

, (35)
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Figure 1. Low quasiparticle energy spectrum for BLG with Rashba-SOI. The
spin degeneracy of the bands at λR = 0 (a) is lifted for λR 6= 0 (b)–(d). When
the strength of the Rashba parameter is increased, the symmetry of the bands is
broken, producing a cone shape for the innermost bands (s = −) at high values
of λR.

where, as before, ν = ± denotes the plus/minus n-LL of a given µ= ± electron/hole branch.
In the limit of a high field 〈S(n)z 〉µ± → ∓1, full polarization is reached, and the state ν = ±

coincides with the spin magnetization signs (∓) of the LLs. If the limit B → 0 is taken, then the
spin polarization 〈S(n)z 〉µ± → ±2(ω2

0/0
2
0)B.

4. Band structure properties in bilayer graphene with Rashba-SOI

The low-quasiparticle-energy band structure for unbiased BLG with Rashba-SOI, as predicted
by equation (15) at zero field, is illustrated in figure 1 for different values of λR strength. In
the absence of Rashba-SOI (λR = 0) the well-recognized parabolic spin-degenerate conduction
and valence bands touching at its extrema at k = 0 are depicted in figure 1(a). For non-
zero λR the spin degeneracy of the bands is broken, inducing a k-linear spin splitting of
width 1s(k)= |E±,∓ − E±,±| = αk. For relatively weak Rashba-SOI (4β2k2

� α2) the band
dispersion follows a parabolic behavior, ε0

µs(k)' µ(β2k2
−

1
2(s)αk), as shown in figure 1(b).

On the other hand, if the condition 4β2k2
� α2 holds, then the relation (15) evolves to a linear

spectrum for the inner bands (ε0
µs(k)' µαk for s = −) and to a k-cubic spectrum for the

outermost bands (ε0
µs(k)' µβ2k3/α for s = +) as plotted in figure 1(d). Similar drastic changes
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Figure 2. Low-energy spectrum for biased BLG with Rashba-SOI. Here U =

0.050 eV. The bias voltage-induced gap decreases as the Rashba parameter λR

increases.

in the band structure due to large Rashba-SOI strengths were reported earlier numerically by
van Gelderen and Morais Smith [39] within a tight-binding framework; see, for instance, the
low-energy bands near the Dirac points in figure 1(d) of that reference.

In the intermediate regime (figure 1(c)), the innermost bands interpolate from k-linear
behavior for electron/hole momentum very close to the Dirac point, to k-cubic dependence for
high momentum. In contrast, the s = + bands seem to be well described by the cubic spectrum
for all values of k. Such remarkable asymmetric behavior of the spectrum of BLG with Rashba-
SOI is certainly unique, since it is not seen in monolayer graphene, nor in semiconductors
with the Rashba-type SOI. These peculiar characteristics of the spectrum of BLG would have
interesting consequences for the electronic and spin-transport properties.

In figure 2, we show the BLG low-energy spectrum for finite bias voltage (U = 0.050 eV) at
various Rashba coupling strengths (λR = 0, λ0, 4λ0 and 12λ0). As in the unbiased case, without
Rashba-SOI, the bands are spin degenerate (figure 2(a)). A gap of 2|U | at k = 0 is opened
between the conduction and valence bands turning BLG into a semiconductor. Moreover, a
band-bending appears at small wave numbers (low momentum) due to the interplay with the
bias gate voltage U . This is the so-called ‘Mexican-hat-like’ shape of the lowest energy bands
well reported in the literature. From equation (14), in this regime (λR = 0) and ka . 1 the
bands are reasonably well described by εµs(k)' µ(U − ξk2 + (β2/2U )k4). For non-zero λR

(figures 2(b)–(d)) the spin degeneracy is lifted. When the Rashba-SOI parameter increases the
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Figure 3. The Rashba-SOI effectively modulates the gap size of the biased BLG.
Inset (a) shows the spectrum of the bands for the critical Rashba-SOI parameter
that ensures a closing gap, λR = γ1/

√
2 with U = 0.025 eV, γ1 = 0.22 eV and

λR = 12λ0.

lowest/highest conduction/valence bands become more warped and the gap tends to decrease as
the lowest conduction band E++ evolves from a Mexican-hat-like shape to an inverted one, and
vice versa for the highest valence band E−+, see figure 3(d) calculated using equation (A.14).
The behavior of the gaps 1g+ = E++ − E−+ (for the innermost bands) and 1g− = E+− − E−−

(for the outermost bands) as a function of the ratio λR/γ1 is plotted in figure 3 for different
bias voltages U . The gap 1g+ in BLG closes as the Rashba parameter increases, reaching its
minimum (zero gap) at λR = γ1/

√
2, to then gradually and linearly open again as λR/γ1 is

increased up to 1. For λR/γ1 > 1 the gap 1g+ remains constant. Inset (a) of figure 3 shows
the band structure for biased BLG with U = 0.025 eV illustrating the zero-gap condition.
Analogous behavior can be seen in the numerical plot depicted in figure 7(b) of [39]. Note that
our analytical low effective modeling for the BLG band structure allows us to also capture the
anomalous behavior of the lowest bands (near the Dirac points) under finite bias and relatively
large Rashba coupling. In addition, it predicts that the closing of the gap occurs provided that
λR = γ1/

√
2, regardless of the magnitude of the bias voltage applied.

5. LL spectrum in BLG with Rashba-SOI

The LL energy spectrum as a function of magnetic field (up to 12 T) for BLG with Rashba-SOI
according to equation (2) is plotted (from n = 0 to 41) in figures 4 and 5 for the unbiased and
biased cases, respectively. The zero gate voltage (U = 0) and without Rashba-SOI case shows
an LL fan diagram that is linear with B and degenerate in spin (figure 4(a)), as expected, because
of the parabolic behavior of the energy bands and since there is no spin-dependent mechanism
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Figure 4. Spectrum of the LLs for BLG with Rashba-SOI within the effective
low-energy theory. A rather unusual characteristic of the LLs is predicted to
occur at large values of the Rashba-SOI strength.

Figure 5. The presence of a bias voltage splits the fan diagram into two, opening
a gap of 2U between the electron and hole LLs.

here to break the spin symmetry. When the Rashba-SOI is present, the spin degeneracy is
lifted, inducing multiple crossings of the LLs at the Fermi energy, similarly to what occurs
in semiconductor two-dimensional electron gases (2DEGs) with Rashba-SOI, and happens
because for sizable λR strengths the LLs with high index and with spin chirality s = + have
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lower energies than those with spin chirality s = − when the field is increased. This is basically
an intermediate regime between those LLs discussed in sections 3.1(ii) and (iii). Note that for
a relatively weak intensity of the Rashba parameter (λR = λ0) the LLs behave roughly linearly
with the field (figure 4(b)), no matter what the spin chirality.

However, for large values (λR = 4λ0) a drastic and unusual change in the LL spectrum
arises (figure 4(c)); the LLs with spin ν = + evolve as B1/2 while those with ν = − develop
a B3/2 dependence as described in section 3.1(iii). Such a difference in the field dependence
effectively squeezes the LLs with ν = − to lower energies when λR is increased, promoting
multiple crossings between the LLs. This surprising result suggests a strong spin polarization of
the LLs induced by a significant increase of the Rashba parameter.

The LLs for the biased U 6= 0 and without Rashba coupling case show instead parabolic
behavior with B, and the fan diagram is split by a gap of 2U (figure 5(a)) as also described by
equation (32). The linear behavior observed for U = 0 and λR = λ0 of the LLs transforms as
well to a B2 dependence for U 6= 0, as predicted by equation (33). The presence of the Rashba-
SOI manifests as well as crossings of the LLs as seen in figure 5(b). The behavior illustrated in
figure 5(c) at relatively large λR is similar to that seen in figure 4(c), but with an open gap and
with almost linear behavior with field for ν = +, and a roughly cubic dependence on B for the
ν = − LLs, see also equation (34). Such an asymmetric response at large Rashba-SOI in BLG
contrasts radically with the linear behavior with field that occurs in single-layer graphene [37]
in the same regime.

6. Summary

We have studied the problem of the influence of the Rashba-SOI on the band structure of
biased and unbiased BLG. Using low-energy effective theory, we have derived a low-energy
Hamiltonian for BLG in the presence of an external magnetic field and SOIs. Analytical
formulae for the energy spectrum of a graphene bilayer with Rashba-SOI are obtained. We
show that for a relatively weak Rashba coupling the spin degeneracy of the electron and hole
bands is broken, inducing a k-linear spin splitting very similar to that found in semiconductor
heterostructures. At intermediate strengths of the Rashba effect, the innermost bands interpolate
from k-linear behavior at small momentum, to k-cubic dependence at high momentum. In
contrast, the outermost bands seem to be well described by the cubic spectrum for all values
of k. For large values of the Rashba coupling there is remarkable warping behavior of the
spectrum near the Dirac point. Such behavior is unique in biased BLG. It is found that the bias-
induced gap in BLG decreases when the Rashba is increased, showing behavior resembling a
topological insulator transition phenomenon. These peculiar characteristics of the spectrum of
BLG with Rashba-SOI may have important consequences for its electronic and spin-transport
properties.

We also obtained an analytical expression for the LLs and spin polarization in biased BLG
with the Rashba effect valid in the low bias regime. It is further predicted that unexpected
asymmetric spin splitting and crossings of the LLs appear because of the interplay between the
Rashba interaction and the bias voltage. These results suggest significant consequences for the
Shubnikov–de Hass oscillations and magnetotransport in BLG as quantum and spin Hall effects,
in the presence of sizable Rashba-SOI in the range of a few meVs.
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Appendix A. Derivation of the low-energy Hamiltonian

In this appendix, we derive the low-energy Hamiltonian for BLG in the presence of both intrinsic
and Rashba-SOIs, as well as the Zeeman effect. The low-energy Hamiltonian is obtained via
Löwdin partitioning, also known as van Vleck’s perturbation theory in the context of atomic
physics [43–45]. First, it is convenient to express the Hamiltonian Hk of equation (5) in the new
spin-dependent atomic basis |9̃

†
K 〉 = {ψA2↑

, ψA2↓
, ψB1↑

, ψB1↓
, ψA1↑

, ψA1↓
, ψB2↑

, ψB2↓
}, leading to

the 8 × 8 Hamiltonian

Hk =


−U + η +1 0 0 0 0 0 γπ 0

0 −U − η−1 0 0 0 0 i λR γπ

0 0 U − η +1 0 γπ†
−i λR 0 0

0 0 0 U + η−1 0 γπ† 0 0
0 0 γπ 0 U + η +1 0 γ1 0
0 0 i λR γπ 0 U − η−1 0 γ1

γπ†
−i λR 0 0 γ1 0 −U − η +1 0

0 γπ† 0 0 0 γ1 0 −U + η−1

 , (A.1)

which can now be written as the sum Hk =H0 + W , with {U, γ1,1, η} ∈H0 and
{λR, γ π, γ π

†
} ∈ W where

H0 =

(
H+ 0
0 H−

)
, H± =


∓U +1+ η 0 γ1 δ± 0

0 ∓U −1− η 0 γ1 δ±
γ1 δ± 0 ±U +1− η 0

0 γ1 δ± 0 ±U −1− η

 ,
(A.2)

with δ+ = 0 and δ− = 1. On the other hand,

W =

(
0 Hs

Hs 0

)
with Hs =


0 0 γπ 0
0 0 i λR γπ

γπ †
−i λR 0 0

0 γπ † 0 0

 . (A.3)

Note that Hs is nothing but the single-layer graphene Hamiltonian with Rashba-SOI in the
basis {ψA2(1)↑, ψA2(1)↓, ψB1(2)↑, ψB1(2)↓}.

BLG with Rashba-SOI, intrinsic-SOI and the Zeeman effect has (in general) eight non-
degenerate levels. The levels are given by the eigenvalues of the Hamiltonian H0:

E0
1 = −1−

√
γ 2

1 + (U + η)2, (A.4)

E0
2 =1−

√
γ 2

1 + (U − η)2, (A.5)

E0
3 = −U − η−1, (A.6)

E0
4 = −U + η +1, (A.7)

New Journal of Physics 14 (2012) 093026 (http://www.njp.org/)

http://www.njp.org/


18

E0
5 = U − η +1, (A.8)

E0
6 = U + η−1, (A.9)

E0
7 = −1+

√
γ 2

1 + (U − η)2, (A.10)

E0
8 =1+

√
γ 2

1 + (U + η)2. (A.11)

The eigenvectors |9µ〉 ofH0 (with µ= 1, 8) can be written as column vectors of the matrix



0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 −S+ 0 0 0 0 0 C+

−S− 0 0 0 0 0 C− 0
0 C+ 0 0 0 0 0 S+

C− 0 0 0 0 0 S− 0


(A.12)

with C± = cos (ϑ±/2), S± = sin
(
ϑ±

/
2
)

and tanϑ± = γ1/(U ± η). Because of the strength of
the parameter γ1, the energy levels of the subspace of high energy, E0

ia ∈
{

E0
1, E0

2, E0
7, E0

8

}
,

and the energy levels of the subspace with low energy, E0
jb ∈

{
E0

3, E0
4, E0

5, E0
6

}
, are well

separated from each other (i.e. |E0
ia − E0

ja| ∼ |E0
ib − E0

jb| � |E0
ia − E0

jb| ∼ |γ1| ). The low-energy
Hamiltonian for BLG can thus be obtained through the unitary transformation H= eiS Hk e−iS,
in which the S matrix elements are given by

Sµν =
iWµν

E0
ν − E0

µ

+ i
∑
µ′

Wµµ′ Wµ′ν(
E0
ν − E0

µ

) (
E0
ν − E0

µ′

) − i
∑
ν′

Wµν′ Wν′ν(
E0
ν − E0

µ

) (
E0
ν′ − E0

ν

)
with Sµν =

(
Sνµ
)

† and Wµν = 〈9µ|W |9ν〉. The low-energy matrix elements of the effective
Hamiltonian up to second order in 1/γ1 are determined by

Hµµ′ = E0
µδµµ′ + Wµµ′ +

1

2

∑
ν

WµνWνµ′

(
1

E0
µ − E0

ν

+
1

E0
µ′ − E0

ν

)
+O(2),

withHµν =
(
Hνµ

)
† and µ,µ′

∈ {3, 4, 5, 6} and ν, ν ′
∈= {1, 2, 7, 8}. The effective Hamiltonian

matrix elements read

H33 = −U − η−1+
2(U + η +1)λ2

R

γ 2
1

+
2γ 2U

γ 2
1

π†π,

H34 =
i(2U + η +1)λR

γ1
2

π

H35 =
−2i λRγ

γ 2
1

π†,

H36 = −
γ 2

γ1

(
π †
)2
,
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H44 = −U + η +1+
2Uγ 2

γ1
2
π †π,

H45 = H36,

H46 = 0,

H55 = U − η +1−
2(U − η−1)λR

2

γ1
2

−
2Uγ 2

γ1
2
ππ†,

H56 =
2i λRγ

γ1
2
(U +1)π†,

H66 = U + η−1−
2Uγ 2

γ1
2
ππ†.

These matrix elements form the desired 4 × 4 low-energy Hamiltonian for BLG

H=


H33 H34 H35 H36

H†
34 H44 H45 H46

H†
35 H

†
45 H55 H56

H†
36 H

†
46 H

†
56 H66

 , (A.13)

which when written in terms of suitable Kronecker products leads to equation (10). Note that
equation (A.13) was projected on the basis set {ψA2↓

, ψA2↑
, ψB1↑

, ψB1↓
}.

Energy dispersion. Consider vanishing intrinsic SOI and no magnetic field (η =1= 0).
To a good approximation, we can neglect the off-diagonal terms that go as 1/γ 2

1 in the effective
Hamiltonian. In such a case the eigenvalues of (A.13) are readily obtained:

Eλs(k)=
λ

√
2

√
U 2 + (U − ρ)2 +A k2 + 2B k4 − s

√
ϒ, (A.14)

where λ indicates the electron (+) and hole (−) branches, whereas s = ± labels the spin state

chirality, A=3− 4ξ̃ U , B = β̃2 + ξ̃ 2, 3= α̃2 + 2ξ̃ρ and ϒ = 4α2β̃2k6 +
(
32 + 4ρ2β̃2

)
k4

−

2ρ3(2U − ρ)k2 + ρ2(2U − ρ)2, where we have introduced the parameters

α̃ =
2h̄γ λR

γ1
, β̃ =

h̄2γ 2

γ1
, ρ =

2UλR

γ1
2
, ξ̃ =

2Uh̄2γ 2

γ 2
1

. (A.15)

In the limit ρ → 0, equation (A.14) reduces to equation (14) with λ= µ.

Appendix B. Eigenvalues of the low-energy Hamiltonian

By squaring the low-energy Hamiltonian (13), a straightforward diagonalizable system is
obtained at zero magnetic field (B = 0):

H2
k =


(U − ξk2)

2
+β2k4

−iαβ k2 k− 0 0

iαβ k2 k+ (U − ξk2)
2

+α2k2 +β2k4 0 0

0 0 (U − ξk2)
2

+α2k2 +β2k4
−iαβ k2 k−

0 0 iαβ k2 k+ (U − ξk2)
2

+β2k4

 (B.1)

with k± = kx ± ky and the eigensystem H2
k |χ〉 = ε2

k |χ〉 yields the eigenvalues

ε2
k,± = (U − ξk2)

2
+ 1

2k2
(
α2 + 2β2k2

±α
√
α2 + 4β2k2

)
, (B.2)
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whereas its eigenvectors |χ j〉 arranged as column vectors form a unitary matrix,

U=


−i sin (θ/2) 0 i cos (θ/2) 0
eiφcos (θ/2) 0 eiφsin (θ/2) 0

0 −i cos (θ/2) 0 i sin (θ/2)
0 eiφsin (θ/2) 0 eiφcos (θ/2)

 , (B.3)

with tan θ = 2βk/α, eiφ
= (kx + i ky)/k and U†

= U−1. In the basis of the eigenvectors of H2
k ,

the 4 × 4 Hamiltonian Hk is conveniently transformed as follows:

H̃k = U†HkU=


−U + ξk2 r∗

+ 0 s∗

r+ U − ξk2
−s 0

0 −s∗
−U + ξk2 r∗

−

s 0 r− U − ξk2

 , (B.4)

and |ψ̃k〉 = U−1
|ψk〉, where

r± = −
1

2
k e2iφ [2βk sin θ +α(cos θ ∓ 1)]

= −
1

2
k e2iφ

[√
α2 + 4β2k2 ±α

]
(B.5)

with

sin θ =
2βk√

α2 + 4β2k2
, cos θ =

α√
α2 + 4β2k2

, (B.6)

whereas

s = −
1

2
k e2iφ[2βk cos θ −α sin θ ] = 0. (B.7)

The eigenvalues of H̃k are determined from εµs(k)= µ
√
(U − ξk2)2 + |rs|

2, with µ= ±

for the electron/hole band and s = ± labeling the spin chirality state. Explicitly,

εµs(k)=
µ

2

√
4 (U − ξk2)2 + k2

(√
α2 + 4k2β2 − s α

)2
. (B.8)

The eigenvectors of H̃k are given by

|ψ̃1〉 =
1√

1 + (χ (−)

+ )
2


i e−2iφχ (−)

+

1
0
0

 , |ψ̃2〉 =
1√

1 + (χ (−)

−
)2


0
0

i e−2iφχ (−)

−

1

 , (B.9)

|ψ̃3〉 =
1√

1 + (χ (+)

+ )
2


i e−2iφχ (+)

+

1
0
0

 , |ψ̃4〉 =
1√

1 + (χ (+)

−
)2


0
0

i e−2iφχ (+)
−

1

 . (B.10)

The eigenvectors ofHk are finally given by |ψk〉 = U|ψ̃k〉 leading to equations (17) and (18)
with χ (µ)s as given by equation (19).
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Appendix C. LLs in BLG with Rashba coupling

Here we outline the derivation of the LLs in biased BLG with Rashba-SOI. We follow the same
approach used in appendix B. Squaring the Hamiltonian (28) gives the block-diagonal matrix

H2
n =


U 2 + (n − 1)nω2

−in
√

n − 10ω 0 0

in
√

n − 10ω U 2 + n
(
02 + (n + 1) ω2

)
0 0

0 0 U 2 + n
(
02 + (n − 1) ω2

)
−in

√
n + 10 ω

0 0 in
√

n + 10ω U 2 + n(n + 1) ω2

 , (C.1)

the eigensystem H2
n|ϕn〉 = ε2

n|ϕn〉 leads to the eigenvalues

ε2
n,± =

1

2

(
2 U 2 + 2n2ω2 + n02

± n
√

4ω4 + 4nω202 +04
)
, (C.2)

and its corresponding eigenvectors |ϕnj〉 written as column vectors form the matrix

V=


0 i cosϑn+ 0 −i sinϑn+

0 sinϑn+ 0 cosϑn+

i cosϑn− 0 −i sinϑn− 0
sinϑn− 0 cosϑn− 0

 , tan(ϑn±)=
2
√

n ∓ 1ω0

2ω2 ±02
(C.3)

and V†V= 1. In the basis of the eigenvectors of H2
n, the 4 × 4 Hamiltonian Hn in equation (28)

is now transformed as follows:

H̃n = V†HnV=


U Qn− 0 un

Qn− −U vn 0
0 vn U Qn+

un 0 Qn+ −U

 and |φ̃n〉 = V−1
|φn〉, (C.4)

where

Qn± = −ω
(√

n(n ± 1) cosϑ+ cosϑ− +
√

n(n ∓ 1) sinϑ+ sinϑ−

)
∓

√
n 0 cosϑ± sinϑ∓

= −4ω20

√
n(n2 − 1)Nn
√
D1∓D2±

, n > 1, (C.5)

where we have used the useful relationships:

cosϑn+ =
2ω2 +02 +

√
Nn

√
D1+

=
2
√

n − 1ω0
√
D1−

, (C.6)

sinϑn+ =
2
√

n − 1ω0
√
D1+

= −
2β2 +02

−
√
Nn

√
D1−

, (C.7)

cosϑn− =
2ω2

−02 +
√
Nn

√
D2+

=
2
√

n + 1ω0
√
D2−

, (C.8)

sinϑn− =
2
√

n + 1ω0
√
D2+

= −
2β2

−02
−

√
Nn

√
D2−

(C.9)

with the definitions of the parameters

Nn = 4ω2(ω2 + n02)+04, (C.10)
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D1± = (4n − 1)ω202 +
(

2ω2 +02
±

√
Nn

)2
, (C.11)

D2± = (4n + 1)ω202 +
(

2ω2
−02

±

√
Nn

)2
. (C.12)

Note that

un = −ω
(√

n(n + 1) cosϑn+ sinϑn− −

√
n(n − 1) sinϑn+ cosϑn−

)
−

√
n 0 cosϑn+ cosϑn− = 0,

(C.13)

vn = −ω
(√

n(n + 1) cosϑn− sinϑn+ −

√
n(n − 1) sinϑn− cosϑn+

)
+

√
n 0 sinϑn+ sinϑn− = 0,

(C.14)

The LLs of BLG with Rashba-SOI are thus determined by the eigenvalues of H̃n, which yields

εn,µν = µ

√
U 2 + |Qnν|

2, (C.15)

for n > 2, with n being the LL index with ν = ± (plus/minus) state of the µ= ± electron
(hole) band. Using equations (C.5) along with (C.10)–(C.12), formula (2) readily follows. The
eigenvectors of H̃n are given by

|φ̃n1〉 =


0

cos η−

sin η−

0

 , |φ̃n2〉 =


cosφ−

sinφ−

0
0

 , |φ̃n3〉 =


0

− cos η+

sin η+

0

 , |φ̃n4〉 =


− cosφ+

sinφ+

0
0

 ,
(C.16)

where the angles η± and φ± satisfy

tan η± =
1

| P± |
=

| Qn+ |∣∣∣U ±
√

U 2 + Q2
n+

∣∣∣ and tanφ± =
1

| M± |
=

| Qn− |∣∣∣U ±
√

U 2 + Q2
n−

∣∣∣ , (C.17)

with M−M+ = P+ P− = −1. The eigenvectors of Hn are thus given by |φnj〉 = V|φ̃nj〉,
and consequently, the eigenvectors of Ĥn are finally determined by |ψn〉 =

(φ
(1)
nj ξn−2, φ

(2)
nj ξn−1, φ

(3)
nj ξn, φ

(4)
nj ξn+1)

T . The normalized eigenvectors for the states (±) of
the nth LL of a given electron (hole) band l are thus explicitly specified by

|ψ (+)
nµ〉 =


−i sinϑn+ sin ηµ ξn−2

cosϑn+ sin ηµ ξn−1

i sinϑn− cos ηµ ξn

− cosϑn− cos ηµ ξn+1

 , |ψ (−)

nµ〉 =


i cosϑn+ sin ηµ ξn−2

sinϑn+ sin ηµ ξn−1

−i cosϑn− cosϕµ ξn

− sinϑn− cosϕµ ξn+1

 , (C.18)

From equations (C.18) and the orthogonality of the oscillator wave functions ξn, it follows that
the components in the plane of BLG of both the valley and spin polarization, vanish identically
for all LLs, 〈τ (n)x 〉µν = 〈τ (n)y 〉µν = 0 and 〈S(n)x 〉µν = 〈S(n)x 〉µν = 0. The valley polarization in the
perpendicular direction (along the z-axis) reads

〈τ (ν)z 〉n,µ =

{
− cos(2ηµ) , for ν = +,
sin2 ηµ − cos2 ϕµ , for ν = −.

(C.19)
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Note that it is k-independent and that in the limit case of zero bias voltage (U = 0) results in
η± = φ± =

π

4 , and hence a zero valley polarization. The zth component of the spin polarization
gives, on the other hand,

〈S(ν)z 〉n,µ =

{
− cosϑn− cos2 ηµ − cosϑn+ sin2 ηµ, ν = +,
cosϑn− cos2 ϕµ + cosϑn+ sin2 ηµ, ν = −,

(C.20)

which in the absence of bias voltage simplifies to equation (35).
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