196 research outputs found

    Cysteine string protein (CSP) and its role in preventing neurodegeneration

    Get PDF
    AbstractCysteine string protein (CSP) is a member of the DnaJ/Hsp40 family of co-chaperones that localises to neuronal synaptic vesicles. Its name derives from the possession of a string of 12–15 cysteine residues, palmitoylation of which is required for targeting to post-Golgi membranes. The DnaJ domain of CSP enables it to bind client proteins and recruit Hsc70 chaperones, thereby contributing to the maintenance of protein folding in the presynaptic compartment. Mutation of CSP in flies, worms and mice reduces lifespan and causes synaptic dysfunction and neurodegeneration. Furthermore, recent studies have revealed that the neurodegenerative disease, adult onset neuronal ceroid lipofuscinosis, is caused by mutations in the human CSPα-encoding DNAJC5 gene. Accumulating evidence suggests that the major mechanism by which CSP prevents neurodegeneration is by maintaining the conformation of SNAP-25, thereby facilitating its entry into the membrane-fusing SNARE complex. In this review, we focus on the role of CSP in preventing neurodegeneration and discuss how recent studies of this universal neuroprotective chaperone are being translated into potential novel therapeutics for neurodegenerative diseases

    Identification of common genetic modifiers of neurodegenerative diseases from an integrative analysis of diverse genetic screens in model organisms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An array of experimental models have been developed in the small model organisms <it>C. elegans, S. cerevisiae </it>and <it>D. melanogaster </it>for the study of various neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and expanded polyglutamine diseases as exemplified by Huntington's disease (HD) and related ataxias. Genetic approaches to determine the nature of regulators of the disease phenotypes have ranged from small scale to essentially whole genome screens. The published data covers distinct models in all three organisms and one important question is the extent to which shared genetic factors can be uncovered that affect several or all disease models. Surprisingly it has appeared that there may be relatively little overlap and that many of the regulators may be organism or disease-specific. There is, however, a need for a fully integrated analysis of the available genetic data based on careful comparison of orthologues across the species to determine the real extent of overlap.</p> <p>Results</p> <p>We carried out an integrated analysis using <it>C. elegans </it>as the baseline model organism since this is the most widely studied in this context. Combination of data from 28 published studies using small to large scale screens in all three small model organisms gave a total of 950 identifications of genetic regulators. Of these 624 were separate genes with orthologues in <it>C. elegans</it>. In addition, 34 of these genes, which all had human orthologues, were found to overlap across studies. Of the common genetic regulators some such as chaperones, ubiquitin-related enzymes (including the E3 ligase CHIP which directly links the two pathways) and histone deacetylases were involved in expected pathways whereas others such as the peroxisomal acyl CoA-oxidase suggest novel targets for neurodegenerative disease therapy</p> <p>Conclusions</p> <p>We identified a significant number of overlapping regulators of neurodegenerative disease models. Since the diseases have, as an underlying feature, protein aggregation phenotypes it was not surprising that some of the overlapping genes encode proteins involved in protein folding and protein degradation. Interestingly, however, some of the overlapping genes encode proteins that have not previously featured in targeted studies of neurodegeneration and this information will form a useful resource to be exploited in further studies of potential drug-targets.</p

    Sense and specificity in neuronal calcium signalling

    Get PDF
    AbstractChanges in the intracellular free calcium concentration ([Ca2+]i) in neurons regulate many and varied aspects of neuronal function over time scales from microseconds to days. The mystery is how a single signalling ion can lead to such diverse and specific changes in cell function. This is partly due to aspects of the Ca2+ signal itself, including its magnitude, duration, localisation and persistent or oscillatory nature. The transduction of the Ca2+ signal requires Ca2+ binding to various Ca2+ sensor proteins. The different properties of these sensors are important for differential signal processing and determine the physiological specificity of Ca2+ signalling pathways. A major factor underlying the specific roles of particular Ca2+ sensor proteins is the nature of their interaction with target proteins and how this mediates unique patterns of regulation. We review here recent progress from structural analyses and from functional analyses in model organisms that have begun to reveal the rules that underlie Ca2+ sensor protein specificity for target interaction. We discuss three case studies exemplifying different aspects of Ca2+ sensor/target interaction. This article is part of a special issue titled the 13th European Symposium on Calcium

    Neuronal calcium sensor proteins: emerging roles in membrane traffic and synaptic plasticity

    Get PDF
    Ca2+ plays a crucial role in the regulation of neuronal function. Recent work has revealed important functions for two families of neuronally expressed Ca2+ sensor proteins. These include roles in membrane traffic and in alterations in synaptic plasticity underlying changes in behaviour

    A major role for protein kinase C in calcium-activated exocytosis in permeabilised adrenal chromaffin cells

    Get PDF
    AbstractThe role of endogenously activated protein kinase C in calcium-activated exocytosis was examined in digitonin-permeabilised bovine adrenal chromaffin cells. Protein kinase C activity was reduced by down-regulation following long-term treatment with PMA or by using the inhibitor sphingosine. Both treatments resulted in a substantial reduction in catecholamine secretion elicited by micromolar calcium, indicating that endogenous activation of protein kinase C is a major requirement for calcium-activated exocytosis in chromaffin cells

    Dynamics and calcium sensitivity of the Ca2+/myristoyl switch protein hippocalcin in living cells

    Get PDF
    Hippocalcin is a neuronal calcium sensor protein that possesses a Ca2+/myristoyl switch allowing it to translocate to membranes. Translocation of hippocalcin in response to increased cytosolic [Ca2+] was examined in HeLa cells expressing hippocalcin–enhanced yellow fluorescent protein (EYFP) to determine the dynamics and Ca2+ affinity of the Ca2+/myristoyl switch in living cells. Ca2+-free hippocalcin was freely diffusible, as shown by photobleaching and use of a photoactivable GFP construct. The translocation was dependent on binding of Ca2+ by EF-hands 2 and 3. Using photolysis of NP-EGTA, the maximal kinetics of translocation was determined (t1/2 = 0.9 s), and this was consistent with a diffusion driven process. Low intensity photolysis of NP-EGTA produced a slow [Ca2+] ramp and revealed that translocation of hippocalcin–EYFP initiated at around 180 nM and was half maximal at 290 nM. Histamine induced a reversible translocation of hippocalcin–EYFP. The data show that hippocalcin is a sensitive Ca2+ sensor capable of responding to increases in intracellular Ca2+ concentration over the narrow dynamic range of 200–800 nM free Ca2+

    Evolution and functional diversity of the Calcium Binding Proteins (CaBPs)

    Get PDF
    The mammalian central nervous system (CNS) exhibits a remarkable ability to process, store, and transfer information. Key to these activities is the use of highly regulated and unique patterns of calcium signals encoded by calcium channels and decoded by families of specific calcium-sensing proteins. The largest family of eukaryotic calcium sensors is those related to the small EF-hand containing protein calmodulin (CaM). In order to maximize the usefulness of calcium as a signaling species and to permit the evolution and fine tuning of the mammalian CNS, families of related proteins have arisen that exhibit characteristic calcium binding properties and tissue-, cellular-, and sub-cellular distribution profiles. The Calcium Binding Proteins (CaBPs) represent one such family of vertebrate specific CaM like proteins that have emerged in recent years as important regulators of essential neuronal target proteins. Bioinformatic analyses indicate that the CaBPs consist of two subfamilies and that the ancestral members of these are CaBP1 and CaBP8. The CaBPs have distinct intracellular localizations based on different targeting mechanisms including a novel type-II transmembrane domain in CaBPs 7 and 8 (otherwise known as calneuron II and calneuron I, respectively). Recent work has led to the identification of new target interactions and possible functions for the CaBPs suggesting that they have multiple physiological roles with relevance for the normal functioning of the CNS

    Determination of the Membrane Topology of the Small EF-Hand Ca2+-Sensing Proteins CaBP7 and CaBP8

    Get PDF
    The CaBPs represent a subfamily of small EF-hand containing calcium (Ca2+)-sensing proteins related to calmodulin that regulate key ion channels in the mammalian nervous system. In a recent bioinformatic analyses we determined that CaBP7 and CaBP8 form an evolutionarily distinct branch within the CaBPs (also known as the calneurons) a finding that is consistent with earlier observations characterising a putative C-terminal transmembrane (TM) spanning helix in each of these proteins which is essential for their sub-cellular targeting to the Golgi apparatus and constitutive secretory vesicles. The C-terminal position of the predicted TM-helix suggests that CaBP7 and CaBP8 could be processed in a manner analogous to tail-anchored integral membrane proteins which exhibit the ability to insert across membranes post-translationally. In this study we have investigated the topology of CaBP7 and CaBP8 within cellular membranes through a combination of trypsin protection and epitope accessibility analyses. Our results indicate that the TM-helices of CaBP7 and CaBP8 insert fully across membranes such that their extreme C-termini are luminal. The observed type-II membrane topology is consistent with processing of CaBP7 and CaBP8 as true tail-anchored proteins. This targeting mechanism is distinct from any other calmodulin related Ca2+-sensor and conceivably underpins unique physiological functions of these proteins
    corecore