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Abstract 

Cysteine string protein (CSP) is a member of the DnaJ/Hsp40 family of co-

chaperones that localises to neuronal synaptic vesicles. Its name derives from the 

possession of a string of 12-15 cysteine residues, palmitoylation of which is required 

for targeting to post-Golgi membranes. The DnaJ domain of CSP enables it to bind 

client proteins and recruit Hsc70 chaperones, thereby contributing to the 

maintenance of protein folding in the presynaptic compartment. Mutation of CSP in 

flies, worms and mice reduces lifespan and causes synaptic dysfunction and 

neurodegeneration. Furthermore, recent studies have revealed that the 

neurodegenerative disease, adult-onset neuronal ceroid lipofuscinosis, is caused by 

mutations in the human CSPα-encoding DNAJC5 gene. Accumulating evidence 

suggests that the major mechanism by which CSP prevents neurodegeneration is by 

maintaining the conformation of SNAP-25, thereby facilitating its entry into the 

membrane-fusing SNARE complex. In this review, we focus on the role of CSP in 

preventing neurodegeneration and discuss how recent studies of this universal 

neuroprotective chaperone are being translated into potential novel therapeutics for 

neurodegenerative diseases.  
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1. Introduction: Discovery and properties of CSPs 

Cysteine string protein (CSP) was first discovered in Drosophila melanogaster based 

on the use of a neuronal-specific monoclonal antibody that labelled nerve terminals.  

Cloning of cDNA revealed that the antibody recognised proteins encoded by three 

splice variants of a novel gene. These were distinguished by the presence of a string 

of 11 contiguous cysteine residues leading to the naming of the protein(s) as 

cysteine string protein [1]. Soon after, a CSP was also discovered in Torpedo 

californica following an attempt to identify possible subunits of neuronal calcium 

channels, which at that time had not been identified or molecularly characterised [2], 

and it was shown to be localised to synaptic vesicles [3]. CSPs were soon identified 

in mammalian species [4-6]. The Torpedo protein [7] and subsequently CSPs in 

other species were found to be extensively palmitoylated on their cysteine residues. 

Palmitoylation was shown to determine the membrane association of CSPs [8-10] 

and the enzymatic basis for palmitoylation of CSP has been extensively studied [11-

16]. In addition to being expressed in multiple species, CSP was also found to be 

present on a wide range of types of secretory vesicles in neuronal and non-neuronal 

tissues [5, 6, 17-19]. Invertebrates such as Drosophila and Caenorhabditis elegans 

have only a single CSP-encoding gene (Csp and dnj-14, respectively); whereas 

mammals express three CSP proteins (α, β, γ) that are encoded by the DNAJC5a, b 

and g genes. CSPα and CSPβ are highly homologous throughout their amino acid 

sequences, but CSPγ is more distantly related [20]. CSPα is the major protein 

expressed in most cells and virtually all neurons. In contrast, mammalian CSPβ and 

CSPγ are expressed only in testis [21, 22], with the exception that CSPβ is uniquely 

also expressed in auditory hair cell neurons [23, 24]. The functional roles of CSPβ 

and CSPγ are unknown. 
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The sequence of CSP revealed that it contains a conserved J domain (Figure 

1) and so it is a member of the DnaJ/Hsp40 family of co-chaperones. CSP has a 

characteristic HPD motif in the J-domain that is required in this family of proteins to 

allow them to bind to Hsc70/Hsp70 and act in concert with Hsc70/Hsp70 in the 

refolding or disaggregation of client proteins. Biochemical analysis of CSP 

demonstrated that it could indeed bind to and activate the ATPase activity of Hsc70 

[25, 26] and also that it could reverse aggregation of model substrates in conjunction 

with Hsc70 [27]. It was subsequently suggested that CSP and Hsc70 function along 

with small glutamine-rich tetratricopeptide repeat-containing protein (SGT) in a 

trimeric complex [28, 29]. While CSP is clearly able to bind to SGT, there are doubts 

about the physiological significance of the SGT interaction. These stem from the fact 

that the interaction of SGT with CSP characterised in vitro with recombinant proteins 

and via the yeast 2-hybrid method occurs through the non-palmitoylated cysteine-

string domain [29], which would not be available for interaction in vivo. Recently it 

has been established that SGT is a chaperone for the transmembrane region of tail-

anchored proteins [30, 31], suggesting that SGT binding to recombinant CSP in vitro 

may be a consequence of  its artefactual recognition of the hydrophobic cysteine rich 

region due to its similarity to a bona fide transmembrane domain. 

 

2. Which proteins are substrates for refolding by the synaptic chaperone CSP? 

Early efforts to discover potential clients for CSP identified multiple direct protein 

interactions including with syntaxin [32-34], VAMP [35, 36], G protein subunits [37, 

38], Rab-GDI [39], mutant huntingtin [40, 41], the α1B subunit of  N-type calcium 

channels [37, 42], the α1A subunit of P/Q type calcium channels [43] and 
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synaptotagmins [44, 45]. The observed reduction of SNAP-25 in CSPα knock out 

mice led to the identification of this protein as a potential CSPα client [46]. More 

recent work has attempted to identify novel CSPα clients by using an unbiased 

proteomic approach searching for any proteins down-regulated in the brains of CSPα 

knock-out mice. This resulted in the identification of 10 chaperones and 27 additional 

down-regulated proteins that included SNAP-25 [47]. The identification of one novel 

CSPα client, dynamin 1, was confirmed in direct binding assays and a role for CSPα 

in dynamin-mediated synaptic vesicle recycling was described in another study [48]. 

 

3. Cellular functions of CSP 

Information on the functional importance of CSP came initially from analysis of Csp 

mutants in Drosophila. The first of the papers on these mutants provided key 

evidence supporting the now accepted role of CSP as a neuroprotective chaperone 

at the synapse [49-51]. In this work it was found that loss of CSP expression resulted 

in very rapid death of adult flies, by 5 days at 22oC and within one hour at 29oC, and 

the flies showed evidence of synaptic degeneration observed by electron microscopy  

[52]. The follow-up analyses of these mutant flies focused to a large extent on 

studying the phenotype of the few adult survivors (95% of Csp null mutants die 

during development) and in particular there was an emphasis on what was seen as 

the “temperature-dependent” aspects of the phenotypes, where the flies rapidly 

became paralysed at elevated temperature [53], rather than the causes of the rapid 

neurodegeneration and death.   

Electrophysiological analysis of synaptic function in Csp mutant flies 

suggested that CSP was required for normal synchronous evoked neurotransmitter 
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release [54, 55], but this did not appear to be related to any effect on presynaptic 

calcium channel function [56]. In addition, the flies showed various defects in calcium 

handling or calcium coupling to exocytosis [57-60]. Studies on non-neuronal cells, 

examining the effects of CSP overexpression suggested a direct role for CSP in 

regulated exocytosis [61-64]. The ability of CSP to interact with its client proteins 

syntaxin or synaptotagmin in vitro was found to be modulated by its phosphorylation 

on Serine 10 [44, 65] and this phosphorylation allows interaction of CSP with 14-3-3 

protein [66]. Ser10 phosphorylation on CSP appears to be constitutive within 

neuronal tissues [67-69], although the extent of phosphorylation varies greatly 

between neighbouring GABAergic and glutamatergic synapses within the same 

region of the cerebellum [67]. The effects of CSP over-expression on the late stages 

of regulated exocytosis are modulated by its phosphorylation on Ser10 [65, 70, 71]. 

 

4. CSP and neurodegeneration 

The key neuroprotective role of CSP was apparent in the fly mutants but only rose to 

prominence in considerations of the function of the protein following analysis of 

CSPα knock-out mice. For the first few weeks of life, these mice appeared normal 

and did not show defects in neurotransmission [22], but then developed a 

progressive sensorimotor disorder, evidence of neurodegeneration in neuromuscular 

junctions and calyx synapses and died at around 8 weeks of age. These mice also 

showed extensive and rapid degeneration of retinal photoreceptors [23] and 

hippocampal GABAergic neurons were found to be differentially sensitive to the 

absence of CSPα compared to glutamatergic neurons [72]. The high sensitivity of 

GABAergic neurons was attributed to their high levels of synaptic activity, which is 
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consistent with the more rapid degeneration seen in tonically active ribbon synapses 

of photoreceptor cells compared to other retinal synapses [23]. More detailed 

analysis of the mice revealed additional defects in synaptic function including a 

reduction in the normal calcium sensitivity of the neurotransmitter release 

mechanism [73] and also an impairment of synaptic vesicle recycling at the 

neuromuscular junction [48]. These latter findings would fit with the existence of 

multiple client proteins for CSP including dynamin 1. 

The evolutionary conservation of CSP’s neuroprotective function is underlined 

by a recent study of the C. elegans CSP orthologue, which is known as DNJ-14. The 

phenotypes of dnj-14 null mutant worms show remarkable similarities to CSP 

knockout mice in that young animals are virtually indistinguishable from wild-type, 

but exhibit progressive neuronal dysfunction and neurodegeneration with increasing 

age and have a reduced lifespan [24]. It is not clear why complete loss of CSP in 

Drosophila causes ~95% embryonic lethality, whereas no major effects on fertility or 

initial viability are observed in knockout worms and mice, but perhaps this reflects 

some specific functions of CSP during fly development. Neurodegeneration in aged 

C. elegans dnj-14 mutants preferentially affects sensory neurons and indeed these 

animals exhibit severely impaired chemosensory neuron function before 

neurodegeneration becomes apparent [24]. This progression from early functional 

synaptic defects leading on to later structural alterations and neuronal death is 

reminiscent of many neurodegenerative diseases and suggests that the dnj-14 worm 

model may be useful for identifying generally neuroprotective mechanisms and 

therapies. However, the surprising observation that loss of CSP is actually 

neuroprotective in a Drosophila model of injury-induced axonal degeneration [74] 

suggests that some acute neurodegeneration models could involve distinct 
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mechanisms that may not be ameliorated by CSP’s otherwise universal 

neuroprotective function. 

A surprising finding was that the neurodegeneration and reduced life-span in 

CSPα KO mice was significantly reversed by overexpressing α-synuclein [46]. Both 

wild-type and a disease-related mutant (A30P) α-synuclein had positive effects 

although that of the wild-type protein was more marked. Conversely, the CSPα KO 

phenotype was exacerbated by knock-out of α- or β-synuclein [46]. Analysis of CSPα 

KO mice expressing the A30P mutant version of α-synuclein revealed that these 

mice show increased synaptic function consistent with a protective function even of 

this pathogenic form of α-synuclein [75]. A further important observation from the 

study of CSPα KO mice and α-synuclein overexpression was that the absence of 

CSPα resulted in a reduction in SNAP-25 levels and a corresponding reduction in the 

levels of assembled SNARE complexes [46]. The loss of SNAP-25 was not affected 

by overexpression of α-synuclein. In contrast, wild type but not A30P α-synuclein 

reversed the reduction in SNARE complexes suggesting that this may contribute, at 

least in part, to the protective effect of α-synuclein. A further link between α-

synuclein and CSPα was shown in a study examining the effects of exogenous α-

synuclein or a β-amyloid peptide on cultured hippocampal neurons where both 

treatments were observed to result in a reduction in levels of CSPα expression [76]. 

 It may seem surprising that SNAP-25 has been identified as a potential client 

for CSPα, as CSPα is primarily a synaptic vesicle protein whereas SNAP-25 is 

largely localised to the axonal plasma membrane (Figure 2). Furthermore, CSPα is 

expressed at relatively low levels (2.8 molecules per synaptic vesicle and 941 

molecules per synapse, on average) compared to the very abundant SNAP-25 
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(26,686 molecules per synapse) [77, 78]. This raises some interesting mechanistic 

questions, as presumably only SNAP-25 molecules in the immediate proximity of 

tethered/docked vesicles at the active zone would be close enough to be 

chaperoned by CSPα/Hsc70. Perhaps this forms a useful checkpoint system, 

ensuring that the energy of ATP hydrolysis by Hsc70 is only expended on priming 

SNAP-25 molecules that can form a local SNARE complex and so drive membrane 

fusion. Nevertheless, it remains unclear how CSP prevents proteasomal degradation 

of the majority of the cellular pool of SNAP-25 despite its substrate being >25-fold in 

excess and mostly localised away from the active zone where CSP binding could 

potentially occur. 

Notwithstanding these questions, detailed analysis of the CSPα knock-out 

mice has strongly suggested that SNAP-25 is the major client for CSP, that CSPα 

stimulates SNARE complex assembly and that neurodegeneration in the absence of 

CSPα can be explained by defective SNAP-25 function [79, 80]. The work of Sharma 

et al [79] showed that in the absence of CSPα SNAP-25 is selectively decreased due 

to its ubiquitination and its proteolysis in an activity-dependent manner. Moreover, 

CSPα over-expression increased SNAP-25 levels. In vitro binding experiments 

suggested that CSPα did not bind directly to SNAP-25, but did so indirectly via 

Hsc70. This is unusual as J domain proteins usually bind the client protein directly 

and then subsequently recruit Hsc70. In an additional study exploring synuclein 

function it was found that the absence of the synucleins reduced the ability of the 

SNAREs to assemble into SNARE complexes and that α-synuclein directly 

stimulated SNARE complex assembly in vitro. This required the direct binding of α-

synuclein to VAMP. These findings could explain the earlier finding [46] that over-

expression of α-synuclein compensates for the loss of CSPα and thereby SNAP-25. 
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A key question at this point was whether the effect of CSPα absence on SNAP-25 

levels or on its folding is the cause of neurodegeneration in the CSPα knock-out 

mice. One possibility was that it is not the reduction in SNAP-25 levels themselves 

that leads to synaptic dysfunction and subsequent neurodegeneration, but the 

accumulation of aberrantly folded forms of SNAP-25  that undergo abnormal protein 

interactions or that other CSPα clients were involved [81]. This issue of the link 

between SNAP-25 and neurodegeneration was further addressed leading to the 

finding that decreased SNAP-25 levels worsened the CSPα knock-out phenotype 

reducing life-span and levels of assembled SNARE complexes and exacerbated 

neurodegeneration [80]. An increase of SNAP-25 levels using lentiviral expression 

rescued the CSPα knock-out phenotype with neurodegeneration (neuronal loss) 

being reversed in brain regions over-expressing SNAP-25. These findings are 

consistent with SNAP-25 being the main CSPα client whose loss leads to 

neurodegeneration in the absence of CSPα. 

 

4. CSP and human neurodegenerative disease 

Despite the compelling evidence for an essential role of CSP in preventing 

neurodegeneration in animal models, a direct link to human disease was established 

only recently. Between 2011 and 2013, four independent research groups reported 

an association between mutations in the CSPα-encoding DNAJC5 gene and adult 

onset neuronal ceroid lipofuscinosis (ANCL), using a combination of whole exome 

sequencing, linkage analysis and candidate gene resequencing [82-85]. ANCL, also 

known as autosomal dominant Kufs’ disease and Parry disease, is a very rare 

hereditary neurodegenerative disorder. It presents with broad clinical variability, 
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although common signs include generalised epilepsy, movement disorders and 

progressive dementia. The disease has a mean age of onset of 30 years and 

progresses rapidly upon diagnosis, with death occurring on average at 45 years of 

age [85]. Pathologically, ANCL is associated with intra-neuronal inclusions of 

autofluorescent lipofuscin-like material and neurodegeneration, hence its 

classification as one of the neuronal ceroid lipofuscinoses, which is a large 

genetically heterogeneous class of neurodegenerative disorders defined by these 

two essential features [86, 87]. However, the visual system tends to be unaffected by 

neurodegeneration in ANCL, in contrast to most other NCLs that are generally 

associated with blindness [85, 86]. Given its rarity and clinical variability, ANCL is 

often misdiagnosed [83], so it is important that several independent groups identified 

the same DNAJC5 mutations in different patient groups, leaving little doubt that 

these mutations cause ANCL. 

 Interestingly, all ANCL patients studied to date harbour one of two mutations 

in the coding sequence for the cysteine string motif, resulting in either a deletion of 

leucine116 or a leucine115-arginine substitution [82-85] (see Figure 1). Given the 

known requirement of the cysteine string domain for palmitoylation [7, 9, 10] and for 

targeting to post-Golgi membranes [9], this immediately suggested that the mutant 

proteins may be inefficiently targeted to synaptic vesicles. Indeed, the original report 

by Noskova et al [82] showed that recombinant GFP-tagged CSPα mutant constructs 

were retained in an abnormal cell body localisation co-migrating with endoplasmic 

reticulum and Golgi markers, in contrast to wild type GFP-CSPα that was efficiently 

transported to the plasma membrane. Consistent with such a targeting defect, post-

mortem brain samples from ANCL patients similarly showed a large reduction in 

synaptic CSPα levels compared to controls [82]. These findings were independently 
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confirmed and extended by Greaves et al [88], who demonstrated that the ANCL 

mutations induce aggregation into SDS-resistant palmitoylated aggregates. 

Importantly, Greaves et al used a dual epitope tagging system to reveal that wild 

type CSPα can co-aggregate with mutant CSPα [88], a finding that has recently been 

confirmed [89], thereby potentially explaining the dominant effect of the mutations 

and the otherwise puzzling observation that ANCL patients lack synaptic CSPα 

protein despite carrying one wild type DNAJC5 allele.  

 Although ANCL is the only disease known to be caused by CSP mutations, 

alterations in the levels or activity of CSP could potentially impact on other 

neurodegenerative conditions given its neuroprotective function. One clue is the 

finding that CSPα can interact with mutant huntingtin containing an expanded polyQ 

domain but not the wild type protein in vitro [40]. This was confirmed in a proteomic 

study of mouse brain [41] but its relevance to the progress of Huntington’s disease is 

still to be established. In addition, it has recently been reported that expression of 

CSPα is reduced in degenerating areas of the forebrain in post-mortem samples of 

Alzheimer’s patients [90]. It appears that this is not simply a consequence of reduced 

synaptic vesicle number, as the integral synaptic membrane protein marker, 

synaptophysin, did not exhibit equivalent reduced expression. Interestingly, the 

reduction of CSPα expression is restricted to degenerating brain areas, with levels 

actually being increased in non-degenerating cerebellar tissue from the same 

patients [90]. Note, however, that heterozygous CSP KO mice, which contain half the 

normal CSP protein level, do not show any difference in susceptibility to prion 

disease in the ME7 model [91]. Nevertheless, a further connection between CSPα 

and more common forms of neurodegeneration comes from the observation that 

SNARE complex levels are reduced in post-mortem brain samples from both 
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Alzheimer’s and Parkinson’s disease patients [92]. Given the role of CSPα in 

facilitating SNARE complex assembly discussed earlier, it is tempting to speculate 

that the reduced levels of SNARE complexes are a consequence of impaired CSPα 

chaperone activity. Clearly, it is important that further studies of post-mortem tissue 

from a variety of neurodegenerative diseases are performed to establish if altered 

CSP activity and/or SNARE complex assembly represent common underlying 

features of neurodegeneration.  

 

5. Therapeutic implications 

CSP is expressed in all synapses and prevents neurodegeneration in worms, flies, 

mice and humans. It therefore appears to be a generally neuroprotective chaperone 

protein. Drugs that could either increase CSP activity or bypass the requirement for 

CSP thus represent potential therapies - not only for ANCL, but more generally for 

neurodegenerative diseases. Indeed, recent work has begun to identify compounds 

that can compensate for the lack of functional CSP in animal models. Treatment of 

CSPα knock-out mice with proteasome inhibitors was found to result in increased 

life-span and a delay in neurodegeneration [92]. This striking result is at first glance 

surprising, as one widely-proposed therapeutic strategy for protein misfolding 

disorders that lead to neurodegeneration is to increase the activity of the ubiquitin-

proteasome system that degrades the misfolded protein(s). It might be expected, 

therefore, that proteasome inhibition would exacerbate neurodegeneration in CSPα 

knock-out mice. The fact that the reverse is true was attributed to an observed 

increase in SNAP-25 levels and in assembled SNARE complexes through 

prevention of SNAP-25 degradation by the proteasome [92]. Furthermore, Sharma et 
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al showed that the reduced levels of assembled SNARE complexes that ultimately 

cause neurodegeneration in CSPα knock-out mice are also evident in post-mortem 

brain samples from Alzheimer’s and Parkinson’s disease patients [92]. Proteasome 

inhibitors may therefore have therapeutic applications for these common 

neurodegenerative diseases as well as for ANCL. 

 A recent chemical screen revealed that resveratrol can rescue the short 

lifespan, chemosensory impairment and neurodegeneration phenotypes of C. 

elegans dnj-14 null mutants [24]. Resveratrol is a plant-derived polyphenolic 

compound found in various foodstuffs, notably red wine, which has well-documented 

cardioprotective, anti-inflammatory, anti-tumour and neuroprotective properties [93]. 

Its mechanism of action is the subject of considerable debate, although most 

attention has focused on resveratrol’s ability to activate the Sirtuin class of NAD+-

dependent histone deacetylases, notably SIRT1. However, rescue of the dnj-14 

phenotypes by resveratrol was unaffected by deletion of the worm SIRT1 orthologue, 

sir-2.1, suggesting a Sirtuin-independent mechanism of action. It has been 

suggested that resveratrol is a competitive inhibitor of cAMP phosphodiesterases 

[94]. This is consistent with the observation that rolipram (a structurally unrelated 

cAMP phosphodiesterase inhibitor with neuroprotective properties [95, 96]) similarly 

rescued dnj-14 phenotypes (Figure 3) [24]. Furthermore, forskolin, which increases 

cAMP levels via activation of adenylate cyclase rather than phosphodiesterase 

inhibition, ameliorates the neuromuscular transmission defects in CSPα knock-out 

mice [48]. It is tempting to speculate that increased cAMP signalling activates 

alternative CSP-independent pathways that facilitate SNARE complex formation, 

thereby compensating for the lack of CSP in these animal models. Indeed, 

phosphorylation of SNAP-25 and other synaptic exocytosis proteins by cAMP-
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dependent protein kinase is known to increase SNARE-dependent 

neurotransmission [97, 98]. Alternatively, it may be that cAMP acts via longer term 

changes in gene expression mediated by neuroprotective transcription factors such 

as cAMP response element binding protein (CREB) [99]. Given the recent 

observations of reduced levels of CSP [90] and of SNARE complexes [92] in 

Alzheimer’s brain samples, this may be relevant to the reported therapeutic effects of 

rolipram [95] and resveratrol [100] in rodent Alzheimer’s models.  

 

6. Conclusions 

Despite being discovered over 20 years ago, interest in CSP has increased greatly in 

recent years as a result of compelling evidence that it provides a universal 

neuroprotective role at synapses from worms to humans. The major mechanism by 

which CSP prevents neurodegeneration appears to be maintaining the conformation 

of SNAP-25 and thereby facilitating correct SNARE complex formation. However, we 

currently lack a molecular level description of how CSP and Hsc70 interact with 

SNAP-25, how this alters SNAP-25’s conformation to facilitate SNARE complex 

formation, and how this interaction (which presumably can only occur in close 

proximity to the very small number of docked synaptic vesicles at the active zone) 

manages to prevent global degradation of SNAP-25 that mainly localises away from 

this region. In addition it seems likely that other client proteins, including dynamin, 

are also involved, so future genetic and proteomic studies may  illuminate such 

SNAP-25-independent functions of CSP. To date, mutations in the DNAJC5 gene 

encoding CSPα have only been associated with ANCL, but given the alterations in 

CSP and SNARE complex levels in Alzheimer’s disease, future human genetic 
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studies may well reveal additional mutations/polymorphisms associated with other 

more common neurodegenerative disorders. Finally, the few studies reported so far 

demonstrate that it is possible to compensate for the lack of CSP with small 

molecules – further work in this area may enable translation of the basic research on 

CSP performed over the last 20 years into novel therapies for neurodegeneration. 
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Figure legends 

Figure 1: Domain structure of human CSPα. The locations of the Serine10 

phosphorylation site, the HPD motif in the J domain, and the cysteine-rich region of 

the protein are indicated. The leucine residues mutated in ANCL patients are 

highlighted by asterisks. 

 

Figure 2: Chaperoning of SNAP-25 by CSP and Hsc70 at the synapse. A typical 

synaptic vesicle containing approximately three molecules of CSP [77] is 

represented. Binding of Hsc70 to SNAP-25 is thought to recruit CSP, thereby altering 

the conformation of SNAP-25, facilitating its entry onto the SNARE complex that 

drives membrane fusion. Direct binding is indicated by double-headed arrows. 

Structures of SNAP-25 (3IPD), and hsc70/DnaK (2KHO) were obtained from the 

Brookhaven protein data bank. The CSP structure prediction was generated by I-

TASSER. Residues involved in Hsc70 binding (HPD motif, blue), synaptotagmin 

binding (E93, yellow), and the serine-10 phosphorylation site (green) are highlighted 

as spheres. All structures were rendered using UCSF chimera.   

 

Figure 3: Resveratrol and rolipram rescue the short lifespan of C. elegans dnj-

14 mutants. Lifespan assays were performed on dnj-14(tm3223) strains, which 

contain a large deletion in the worm orthologue of CSP, in the presence and 

absence of drugs; and also on the corresponding wild type strain (Bristol N2).  
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