756 research outputs found

    Hybrid neutron stars within the Nambu-Jona-Lasinio model and confinement

    Full text link
    Recently, it has been shown that the standard Nambu-Jona-Lasinio (NJL) model is not able to reproduce the correct QCD behavior of the gap equation at large density, and therefore a different cutoff procedure at large momenta has ben proposed. We found that, even with this density dependent cutoff procedure, the pure quark phase in neutron stars (NS) interiors is unstable, and we argue that this could be related to the lack of confinement in the original NJL model.Comment: 2 pages, 1 figure, to be published in the proceedings of the conference EXOCT07, Catania, 11-15 June, 200

    Spinodal instabilities within BUU approach

    Get PDF
    Using a recently developed method for the inclusion of fluctuation in the BUU dynamics, we study the self-consistent propagation of inherent thermal noise of unstable nuclear matter. The large time behaviour of the evolving system exhibits synergism between fluctuation and non-linearities in a universal manner which manifest in the appearance of macroscopic structure in the average description.Comment: 12 pages Revtex. Two figures, uuencoded, are enclosed in a separate fil

    The Equation of State of Dense Matter : from Nuclear Collisions to Neutron Stars

    Get PDF
    The Equation of State (EoS) of dense matter represents a central issue in the study of compact astrophysical objects and heavy ion reactions at intermediate and relativistic energies. We have derived a nuclear EoS with nucleons and hyperons within the Brueckner-Hartree-Fock approach, and joined it with quark matter EoS. For that, we have employed the MIT bag model, as well as the Nambu--Jona-Lasinio (NJL) and the Color Dielectric (CD) models, and found that the NS maximum masses are not larger than 1.7 solar masses. A comparison with available data supports the idea that dense matter EoS should be soft at low density and quite stiff at high density.Comment: 8 pages, 5 figures, invited talk given at NPA3, Dresden, March 200

    3D MODELING OF TWO LOUTERIA FRAGMENTS BY IMAGE-BASED APPROACH

    Get PDF
    The paper presents a digital approach to the reconstruction and analysis of two small-sized fragments of louteria, a kind of large terracotta vase, found during an archaeological survey in the south of Sicily (Italy), in the area of Cignana near the Greek colony of Akragas (nowadays Agrigento). The fragments of louteria have been studied by an image-based approach in order to achieve high accurate and very detailed 3D models. The 3D models have been used to carry out interpretive and geometric analysis from an archaeological point of view. Using different digital tools, it was possible to highlight some fine details of the louteria decorations and to better understand the characteristics of the two fragments. The 3D models provide also the possibility to study and to document these archaeological finds in a digital environment

    Heavy Ion Dynamics and Neutron Stars

    Full text link
    Some considerations are reported, freely inspired from the presentations and discussions during the Beijing Normal University Workshop on the above Subject, held in July 2007. Of course this cannot be a complete summary but just a collection of personal thougths aroused during the meeting.Comment: 11 pages, no figures, Summary Talk, Int.Workshop on "Nuclear Dynamics in Heavy Ion Collisions and Neutron Stars", Beijing Normal Univ. July 07, to appear in Int.Journ.Modern Physics E (2008

    Structure of hybrid protoneutron stars within the Nambu--Jona-Lasinio model

    Get PDF
    We investigate the structure of protoneutron stars (PNS) formed by hadronic and quark matter in β\beta-equilibrium described by appropriate equations of state (EOS). For the hadronic matter, we use a finite temperature EOS based on the Brueckner-Bethe-Goldstone many-body theory, with realistic two- and three-body forces. For the quark sector, we employ the Nambu--Jona-Lasinio model. We find that the maximum allowed masses are comprised in a narrow range around 1.8 solar masses, with a slight dependence on the temperature. Metastable hybrid protoneutron stars are not found.Comment: 7 pages, 6 figures, revised version accepted for publication in Phys. Rev.

    Hamiltonian approach to QCD in Coulomb gauge - a survey of recent results

    Get PDF
    I report on recent results obtained within the Hamiltonian approach to QCD in Coulomb gauge. Furthermore this approach is compared to recent lattice data, which were obtained by an alternative gauge fixing method and which show an improved agreement with the continuum results. By relating the Gribov confinement scenario to the center vortex picture of confinement it is shown that the Coulomb string tension is tied to the spatial string tension. For the quark sector a vacuum wave functional is used which explicitly contains the coupling of the quarks to the transverse gluons and which results in variational equations which are free of ultraviolet divergences. The variational approach is extended to finite temperatures by compactifying a spatial dimension. The effective potential of the Polyakov loop is evaluated from the zero-temperature variational solution. For pure Yang--Mills theory, the deconfinement phase transition is found to be second order for SU(2) and first order for SU(3), in agreement with the lattice results. The corresponding critical temperatures are found to be 275MeV275 \, \mathrm{MeV} and 280MeV280 \, \mathrm{MeV}, respectively. When quarks are included, the deconfinement transition turns into a cross-over. From the dual and chiral quark condensate one finds pseudo-critical temperatures of 198MeV198 \, \mathrm{MeV} and 170MeV170 \, \mathrm{MeV}, respectively, for the deconfinement and chiral transition.Comment: Talk given by H. Reinhardt at "5th Winter Workshop on Non-Perturbative Quantum Field Theory", 22-24 March 2017, Sophia-Antipolis, France. arXiv admin note: text overlap with arXiv:1609.09370, arXiv:1510.03286, arXiv:1607.0814
    corecore