544 research outputs found

    Structure of the hadron-quark mixed phase in protoneutron stars

    Full text link
    We study the hadron-quark phase transition in the interior of hot protoneutron stars, combining the Brueckner-Hartree-Fock approach for hadronic matter with the MIT bag model or the Dyson-Schwinger model for quark matter. We examine the structure of the mixed phase constructed according to different prescriptions for the phase transition, and the resulting consequences for stellar properties. We find important effects for the internal composition, but only very small influence on the global stellar properties.Comment: 6 pages, 4 figure

    Optimized Local Path Planner Implementation for GPU-Accelerated Embedded Systems

    Get PDF
    Autonomous vehicles are latency-sensitive systems. The planning phase is a critical component of such systems, during which the in-vehicle compute platform is responsible for determining the future maneuvers that the vehicle will follow. In this paper, we present a GPU-accelerated optimized implementation of the Frenet Path Planner, a widely known path planning algorithm. Unlike the current state-of-the-art, our implementation accelerates the entire algorithm, including the path generation and collision avoidance phases. We measure the execution time of our implementation and demonstrate dramatic speedups compared to the CPU baseline implementation. Additionally, we evaluate the impact of different precision types (double, float, half) on trajectory errors to investigate the tradeoff between completion latencies and computation precision

    Structure of hybrid protoneutron stars within the Nambu--Jona-Lasinio model

    Get PDF
    We investigate the structure of protoneutron stars (PNS) formed by hadronic and quark matter in β\beta-equilibrium described by appropriate equations of state (EOS). For the hadronic matter, we use a finite temperature EOS based on the Brueckner-Bethe-Goldstone many-body theory, with realistic two- and three-body forces. For the quark sector, we employ the Nambu--Jona-Lasinio model. We find that the maximum allowed masses are comprised in a narrow range around 1.8 solar masses, with a slight dependence on the temperature. Metastable hybrid protoneutron stars are not found.Comment: 7 pages, 6 figures, revised version accepted for publication in Phys. Rev.

    The Operator Product Expansion, Non-perturbative Couplings and the Landau Pole: Lessons from the O(N) σ\sigma-Model

    Get PDF
    We obtain the operator product expansion of the self-energy in the O(N) non-linear σ\sigma-model to all orders in the coupling and the large momentum, and to next-to-leading order in 1/N. In the light of this result we discuss recent suggestions that there may be additional power corrections from short distances, associated with defining the coupling constant non-perturbatively. The non-linear σ\sigma-model provides no evidence for such `non-standard' power corrections. We also find that the OPE converges for sufficiently large external momentum, presumably because there are no multi-particle thresholds at arbitrarily high energies in the 1/N expansion.Comment: 13 pages, 3 figure

    Hybrid protoneutron stars with the MIT bag model

    Get PDF
    We study the hadron-quark phase transition in the interior of protoneutron stars. For the hadronic sector, we use a microscopic equation of state involving nucleons and hyperons derived within the finite-temperature Brueckner-Bethe-Goldstone many-body theory, with realistic two-body and three-body forces. For the description of quark matter, we employ the MIT bag model both with a constant and a density-dependent bag parameter. We calculate the structure of protostars with the equation of state comprising both phases and find maximum masses below 1.6 solar masses. Metastable heavy hybrid protostars are not found.Comment: 12 pages, 9 figures submitted to Phys. Rev.

    Astrophysical constraints on the confining models : the Field Correlator Method

    Get PDF
    We explore the relevance of confinement in quark matter models for the possible quark core of neutron stars. For the quark phase, we adopt the equation of state (EoS) derived with the Field Correlator Method, extended to the zero temperature limit. For the hadronic phase, we use the microscopic Brueckner-Hartree-Fock many-body theory. We find that the currently adopted value of the gluon condensate G20.0060.007GeV4G_2 \simeq 0.006-0.007 \rm {GeV^4}, which gives a critical temperature Tc170MeVT_c \simeq 170 \rm MeV, produces maximum masses which are only marginally consistent with the observational limit, while larger masses are possible if the gluon condensate is increased.Comment: 7 pages, 5 figure

    Recent Developments of Photovoltaics Integrated with Battery Storage Systems and Related Feed-In Tariff Policies: A Review

    Get PDF
    The paper presents a review of the recent developments of photovoltaics integrated with battery storage systems (PV-BESs) and related to feed-in tariff policies. The integrated photovoltaic battery systems are separately discussed in the regulatory context of Germany, Italy, Spain, United Kingdom, Australia, and Greece; the attention of this paper is focused on those integrated systems subject to incentivisation policies such as feed-in tariff. Most of the contributions reported in this paper consider already existing incentive schemes; the remaining part of the contributions proposes interesting and novel feed-in tariff schemes. All the contributions provide an important resource for carrying out further research on a new era of incentive policies in order to promote storage technologies and integrated photovoltaic battery systems in smart grids and smart cities. Recent incentive policies adopted in Germany, Italy, Spain, and Australia are also discussed

    Hadron-Quark Phase Transitions in Hyperon Stars

    Get PDF
    We compare the Gibbs and Maxwell constructions for the hadron-quark phase transition in neutron and protoneutron stars, including interacting hyperons in the confined phase. We find that the hyperon populations are suppressed, and that neutrino trapping shifts the onset of the phase transition. The effects on the (proto)neutron star maximum mass are explored.Comment: 11 pages, 3 figure

    A renewable energy community of DC nanogrids for providing balancing services

    Get PDF
    The massive expansion of Distributed Energy Resources and schedulable loads have forced a variation of generation, transmission, and final usage of electricity towards the paradigm of Smart Communities microgrids and of Renewable Energy Communities. In the paper, the use of multiple DC microgrids for residential applications, i.e., the nanogrids, in order to compose and create a renewable energy community, is hypothesized. The DC Bus Signaling distributed control strategy for the power management of each individual nanogrid is applied to satisfy the power flow requests sent from an aggregator. It is important to underline that this is an adaptive control strategy, i.e., it is used when the nanogrid provides a service to the aggregator and when not. In addition, the value of the DC bus voltage of each nanogrid is communicated to the aggregator. In this way, the aggregator is aware of the regulation capacity that each nanogrid can provide and which flexible resources are used to provide this capacity. The effectiveness of the proposed control strategy is demonstrated via numerical experiments. The energy community considered in the paper consists of five nanogrids, interfaced to a common ML-LV substation. The nanogrids, equipped with a photovoltaic plant and a set of lithium-ion batteries, participate in the balancing service depending on its local generation and storage capacity. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    3d printing and testing of rose thorns or limpet teeth inspired anchor device for tendon tissue repair

    Get PDF
    Purposes: Advancements in medical technology have enabled medical specialists to resolve significant problems concerning tendon injuries. However, despite the latest improvements, surgical tendon repair remains challenging. This study aimed to explore the capabilities of the current state-of-the-art technologies for implantable devices. Methods: After performing extensive patent landscaping and literature review, an anchored tissue fixation device was deemed the most suitable candidate. This design was firstly investigated numerically, realizing a Finite Element Model of the device anchored to two swine tendons stumps, to simulate its application on a severed tendon. Two different hook designs, both bio-inspired, were tested while retaining the same device geometry and anchoring strategy. Then, the applicability of a 3D-printed prototype was tested on swine tendons. Finally, the device-tendon stumps ensemble was subjected to uniaxial tensile tests. Results: The results show that the investigated device enables a better load distribution during the immobilized limb period in comparison to standard suture-based approaches, yet it still presents several design flaws. Conclusions: The current implantable solutions do not ensure an optimal result in terms of strength recovery. This and other weak points of the currently available proposals will serve as a starting point for future works on bio-inspired implantable devices for tendon repair
    corecore