705 research outputs found

    Comparison of pre-emptive and reactive strategies to control an incursion of bluetongue virus serotype 1 to Great Britain by vaccination.

    Get PDF
    Bluetongue (BT) is a disease of ruminants caused by bluetongue virus (BTV), which is spread between its hosts by Culicoides midges. Vaccination is the most effective way to protect susceptible animals against BTV and was used reactively to control the recent northern European outbreak. To assess the consequences of using vaccination pre-emptively we used a stochastic, spatially explicit model to compare reactive and pre-emptive vaccination strategies against an incursion of BTV serotype 1 (BTV-1) into Great Britain. Both pre-emptive and reactive vaccination significantly reduced the number of affected farms and limited host morbidity and mortality. In addition, vaccinating prior to the introduction of disease reduced the probability of an outbreak occurring. Of the strategies simulated, widespread reactive vaccination resulted in the lowest levels of morbidity. The predicted effects of vaccination were found to be sensitive to vaccine efficacy but not to the choice of transmission kernel

    Denitrification by sulfur-oxidizing bacteria in a eutrophic lake

    Get PDF
    Understanding the mechanistic controls of microbial denitrification is of central importance to both environmental microbiology and ecosystem ecology. Loss of nitrate (NO3 −) is often attributed to carbon-driven (heterotrophic) denitrification. However, denitrification can also be coupled to sulfur (S) oxidation by chemolithoautotrophic bacteria. In the present study, we used an in situ stable isotope (15NO3 −) tracer addition in combination with molecular approaches to understand the contribution of sulfur-oxidizing bacteria to the reduction of NO3 − in a eutrophic lake. Samples were incubated across a total dissolved sulfide (H2S) gradient (2 to 95 μM) between the lower epilimnion and the upper hypolimnion. Denitrification rates were low at the top of the chemocline (4.5 m) but increased in the deeper waters (5.0 and 5.5 m), where H2S was abundant. Concomitant with increased denitrification at depths with high sulfide was the production of sulfate (SO4 2−), suggesting that the added NO3 − was used to oxidize H2S to SO4 2−. Alternative nitrate removal pathways, including dissimilatory nitrate reduction to ammonium (DNRA) and anaerobic ammonium oxidation (anammox), did not systematically change with depth and accounted for 1 to 15% of the overall nitrate loss. Quantitative PCR revealed that bacteria of the Sulfurimonas genus that are known denitrifiers increased in abundance in response to NO3 − addition in the treatments with higher H2S. Stoichiometric estimates suggest that H2S oxidation accounted for more than half of the denitrification at the depth with the highest sulfide concentration. The present study provides evidence that microbial coupling of S and nitrogen (N) cycling is likely to be important in eutrophic freshwater ecosystems

    General linear dynamics - quantum, classical or hybrid

    Full text link
    We describe our recent proposal of a path integral formulation of classical Hamiltonian dynamics. Which leads us here to a new attempt at hybrid dynamics, which concerns the direct coupling of classical and quantum mechanical degrees of freedom. This is of practical as well as of foundational interest and no fully satisfactory solution of this problem has been established to date. Related aspects will be observed in a general linear ensemble theory, which comprises classical and quantum dynamics in the form of Liouville and von Neumann equations, respectively, as special cases. Considering the simplest object characterized by a two-dimensional state-space, we illustrate how quantum mechanics is special in several respects among possible linear generalizations.Comment: 17 pages; based on invited talks at the conferences DICE2010 (Castiglioncello, Italia, Sept 13-17, 2010) and Quantum Field Theory and Gravity (Regensburg, Germany, Sept 28 - Oct 1, 2010

    The Triplet Modeling of Concept Connections

    Full text link

    Safety and feasibility of NeuroFlo use in eight- to 24-hour ischemic stroke patients.

    Get PDF
    BACKGROUND: Acute treatment of ischemic stroke patients presenting more than eight-hours after symptom onset remains limited and largely unproven. Partial aortic occlusion using the NeuroFlo catheter can augment cerebral perfusion in animals. We investigated the safety and feasibility of employing this novel catheter to treat ischemic stroke patients eight-hours to 24 h following symptom onset. METHODS: A multicenter, single-arm trial enrolled ischemic stroke patients at nine international academic medical centers. Eligibility included age 18-85 years old, National Institutes of Health stroke scale (NIHSS) score between four and 20, within eight-hours to 24 h after symptom onset, and perfusion-diffusion mismatch confirmed by magnetic resonance imaging. The primary outcome was all adverse events occurring from baseline to 30 days posttreatment. Secondary outcomes included stroke severity on neurological indices through 90 days. This study is registered with ClinicalTrials.gov, number NCT00436592. RESULTS: A total of 26 patients were enrolled. Of these, 25 received treatment (one excluded due to aortic morphology); five (20%) died. Favorable neurological outcome at 90 days (modified Rankin score 0-2 vs. 3-6) was associated with lower baseline NIHSS (P < 0·001) and with longer duration from symptom discovery to treatment. There were no symptomatic intracranial hemorrhages or parenchymal hematomas. Asymptomatic intracranial hemorrhage was visible on computed tomography in 32% and only on microbleed in another 20%. CONCLUSIONS: Partial aortic occlusion using the NeuroFlo catheter, a novel collateral therapeutic strategy, appears safe and feasible in stroke patients eight-hours to 24 h after symptom onset
    corecore