41 research outputs found

    Dynamics of severe accidents in the oil & gas energy sector derived from the authoritative ENergy-related severe accident database

    Get PDF
    Organized into a global network of critical infrastructures, the oil & gas industry remains to this day the main energy contributor to the world's economy. Severe accidents occasionally occur resulting in fatalities and disruption. We build an oil & gas accident graph based on more than a thousand severe accidents for the period 1970-2016 recorded for refineries, tankers, and gas networks in the authoritative ENergy-related Severe Accident Database (ENSAD). We explore the distribution of potential chains-of-events leading to severe accidents by combining graph theory, Markov analysis and catastrophe dynamics. Using centrality measures, we first verify that human error is consistently the main source of accidents and that explosion, fire, toxic release, and element rupture are the principal sinks, but also the main catalysts for accident amplification. Second, we quantify the space of possible chains-of-events using the concept of fundamental matrix and rank them by defining a likelihood-based importance measure Îł. We find that chains of up to five events can play a significant role in severe accidents, consisting of feedback loops of the aforementioned events but also of secondary events not directly identifiable from graph topology and yet participating in the most likely chains-of-events

    Renewable Energy in the Context of Sustainable Development

    Get PDF
    Historically, economic development has been strongly correlated with increasing energy use and growth of greenhouse gas (GHG) emissions. Renewable energy (RE) can help decouple that correlation, contributing to sustainable development (SD). In addition, RE offers the opportunity to improve access to modern energy services for the poorest members of society, which is crucial for the achievement of any single of the eight Millennium Development Goals. Theoretical concepts of SD can provide useful frameworks to assess the interactions between SD and RE. SD addresses concerns about relationships between human society and nature. Traditionally, SD has been framed in the three-pillar model—Economy, Ecology, and Society—allowing a schematic categorization of development goals, with the three pillars being interdependent and mutually reinforcing. Within another conceptual framework, SD can be oriented along a continuum between the two paradigms of weak sustainability and strong sustainability. The two paradigms differ in assumptions about the substitutability of natural and human-made capital. RE can contribute to the development goals of the three-pillar model and can be assessed in terms of both weak and strong SD, since RE utilization is defined as sustaining natural capital as long as its resource use does not reduce the potential for future harvest. The relationship between RE and SD can be viewed as a hierarchy of goals and constraints that involve both global and regional or local considerations. Though the exact contribution of RE to SD has to be evaluated in a country specifi c context, RE offers the opportunity to contribute to a number of important SD goals: (1) social and economic development; (2) energy access; (3) energy security; (4) climate change mitigation and the reduction of environmental and health impacts. The mitigation of dangerous anthropogenic climate change is seen as one strong driving force behind the increased use of RE worldwide. The chapter provides an overview of the scientific literature on the relationship between these four SD goals and RE and, at times, fossil and nuclear energy technologies. The assessments are based on different methodological tools, including bottom-up indicators derived from attributional lifecycle assessments (LCA) or energy statistics, dynamic integrated modelling approaches, and qualitative analyses. Countries at different levels of development have different incentives and socioeconomic SD goals to advance RE. The creation of employment opportunities and actively promoting structural change in the economy are seen, especially in industrialized countries, as goals that support the promotion of RE. However, the associated costs are a major factor determining the desirability of RE to meet increasing energy demand and concerns have been voiced that increased energy prices might endanger industrializing countries’ development prospects; this underlines the need for a concomitant discussion about the details of an international burden-sharing regime. Still, decentralized grids based on RE have expanded and already improved energy access in developing countries. Under favorable conditions, cost savings in comparison to non-RE use exist, in particular in remote areas and in poor rural areas lacking centralized energy access. In addition, non-electrical RE technologies offer opportunities for modernization of energy services, for example, using solar energy for water heating and crop drying, biofuels for transportation, biogas and modern biomass for heating, cooling, cooking and lighting, and wind for water pumping. RE deployment can contribute to energy security by diversifying energy sources and diminishing dependence on a limited number of suppliers, therefore reducing the economy’s vulnerability to price volatility. Many developing countries specifically link energy access and security issues to include stability and reliability of local supply in their definition of energy security. Supporting the SD goal to mitigate environmental impacts from energy systems, RE technologies can provide important benefits compared to fossil fuels, in particular regarding GHG emissions. Maximizing these benefits often depends on the specific technology, management, and site characteristics associated with each RE project, especially with respect to land use change (LUC) impacts. Lifecycle assessments for electricity generation indicate that GHG emissions from RE technologies are, in general, considerably lower than those associated with fossil fuel options, and in a range of conditions, less than fossil fuels employing carbon capture and storage (CCS). The maximum estimate for concentrating solar power (CSP), geothermal, hydropower, ocean and wind energy is less than or equal to 100 g CO2eq/kWh, and median values for all RE range from 4 to 46 g CO2eq/kWh. The GHG balances of bioenergy production, however, have considerable uncertainties, mostly related to land management and LUC. Excluding LUC, most bioenergy systems reduce GHG emissions compared to fossil-fueled systems and can lead to avoided GHG emissions from residues and wastes in landfill disposals and co-products; the combination of bioenergy with CCS may provide for further reductions. For transport fuels, some first-generation biofuels result in relatively modest GHG mitigation potential, while most next-generation biofuels could provide greater climate benefits. To optimize benefits from bioenergy production, it is critical to reduce uncertainties and to consider ways to mitigate the risk of bioenergy-induced LUC. RE technologies can also offer benefits with respect to air pollution and health. Non-combustion-based RE power generation technologies have the potential to significantly reduce local and regional air pollution and lower associated health impacts compared to fossil-based power generation. Impacts on water and biodiversity, however, depend on local conditions. In areas where water scarcity is already a concern, non-thermal RE technologies or thermal RE technologies using dry cooling can provide energy services without additional stress on water resources. Conventional water-cooled thermal power plants may be especially vulnerable to conditions of water scarcity and climate change. Hydropower and some bioenergy systems are dependent on water availability, and can either increase competition or mitigate water scarcity. RE specific impacts on biodiversity may be positive or negative; the degree of these impacts will be determined by site-specific conditions. Accident risks of RE technologies are not negligible, but the technologies’ often decentralized structure strongly limits the potential for disastrous consequences in terms of fatalities. However, dams associated with some hydropower projects may create a specific risk depending on site-specific factors. The scenario literature that describes global mitigation pathways for RE deployment can provide some insights into associated SD implications. Putting an upper limit on future GHG emissions results in welfare losses (usually measured as gross domestic product or consumption foregone), disregarding the costs of climate change impacts. These welfare losses are based on assumptions about the availability and costs of mitigation technologies and increase when the availability of technological alternatives for constraining GHGs, for example, RE technologies, is limited. Scenario analyses show that developing countries are likely to see most of the expansion of RE production. Increasing energy access is not necessarily beneficial for all aspects of SD, as a shift to modern energy away from, for example, traditional biomass could simply be a shift to fossil fuels. In general, available scenario analyses highlight the role of policies and finance for increased energy access, even though forced shifts to RE that would provide access to modern energy services could negatively affect household budgets. To the extent that RE deployment in mitigation scenarios contributes to diversifying the energy portfolio, it has the potential to enhance energy security by making the energy system less susceptible to (sudden) energy supply disruption. In scenarios, this role of RE will vary with the energy form. With appropriate carbon mitigation policies in place, electricity generation can be relatively easily decarbonized through RE sources that have the potential to replace concentrated and increasingly scarce fossil fuels in the building and industry sectors. By contrast, the demand for liquid fuels in the transport sector remains inelastic if no technological breakthrough can be achieved. Therefore oil and related energy security concerns are likely to continue to play a role in the future global energy system; as compared to today these will be seen more prominently in developing countries. In order to take account of environmental and health impacts from energy systems, several models have included explicit representation of these, such as sulphate pollution. Some scenario results show that climate policy can help drive improvements in local air pollution (i.e., particulate matter), but air pollution reduction policies alone do not necessarily drive reductions in GHG emissions. Another implication of some potential energy trajectories is the possible diversion of land to support biofuel production. Scenario results have pointed at the possibility that climate policy could drive widespread deforestation if not accompanied by other policy measures, with land use being shifted to bioenergy crops with possibly adverse SD implications, including GHG emissions. 712 Renewable Energy in the Context of Sustainable Development Chapter 9 The integration of RE policies and measures in SD strategies at various levels can help overcome existing barriers and create opportunities for RE deployment in line with meeting SD goals. In the context of SD, barriers continue to impede RE deployment. Besides market-related and economic barriers, those barriers intrinsically linked to societal and personal values and norms will fundamentally affect the perception and acceptance of RE technologies and related deployment impacts by individuals, groups and societies. Dedicated communication efforts are therefore a crucial component of any transformation strategy and local SD initiatives can play an important role in this context. At international and national levels, strategies should include: the removal of mechanisms that are perceived to work against SD; mechanisms for SD that internalize environmental and social externalities; and RE strategies that support low-carbon, green and sustainable development including leapfrogging. The assessment has shown that RE can contribute to SD to varying degrees; more interdisciplinary research is needed to close existing knowledge gaps. While benefi ts with respect to reduced environmental and health impacts may appear more clear-cut, the exact contribution to, for example, social and economic development is more ambiguous. In order to improve the knowledge regarding the interrelations between SD and RE and to fi nd answers to the question of an effective, economically effi cient and socially acceptable transformation of the energy system, a much closer integration of insights from social, natural and economic sciences (e.g., through risk analysis approaches), refl ecting the different (especially intertemporal, spatial and intra-generational) dimensions of sustainability, is required. So far, the knowledge base is often limited to very narrow views from specifi c branches of research, which do not fully account for the complexity of the issue

    Severe Accidents in the Oil Chain with Emphasis on Oil Spills; Strategic Insights, v. 7 issue 1 (February 2008)

    Get PDF
    This article appeared in Strategic Insights, v.7 issue 1 (February 2008)Approved for public release; distribution is unlimited

    Comparative accident risk assessment of energy system technologies for the energy transition in OECD countries

    No full text
    This study presents a comparative accident risk assessment for different energy technologies, e.g., fossil fuels (incl. CCUS), Hydropower, H2, Nuclear, and new renewables, in the Organization for Economic Co-operation and Development (OECD) countries. The quantitative analysis is based on the historical observations collected in the Paul Scherrer Institute (PSI)'s ENergy-related Severe Accident Database (ENSAD) and updated using different sources, for the period 1970-2020, whereas for Nuclear a simplified level-3 Probabilistic Safety Assessment (PSA) is applied. Furthermore, for each energy technology, risk indicators, e.g., fatality rate and maximum consequences, are estimated to allow for comparison. Generally, fatality rates for Nuclear, Hydrogen, Hydropower and new renewables perform better than the fossil energy chains. In contrast, maximum consequences can be far highest for Nuclear, intermediate for fossil and Hydropower, and lowest for new renewables, which are less prone to severe accidents. Overall, no technology performs best or worst in all respects, thus trade-offs and priorities are needed to balance the conflicting objectives such as energy security, sustainability, and risk aversion to support rationale decision making

    Comparative Risk Assessment for Fossil Energy Chains Using Bayesian Model Averaging

    No full text
    The accident risk of severe (≥5 fatalities) accidents in fossil energy chains (Coal, Oil and Natural Gas) is analyzed. The full chain risk is assessed for Organization for Economic Co-operation and Development (OECD), 28 Member States of the European Union (EU28) and non-OECD countries. Furthermore, for Coal, Chinese data are analysed separately for three different periods, i.e., 1994–1999, 2000–2008 and 2009–2016, due to different data sources, and highly incomplete data prior to 1994. A Bayesian Model Averaging (BMA) is applied to investigate the risk and associated uncertainties of a comprehensive accident data set from the Paul Scherrer Institute’s ENergy-related Severe Accident Database (ENSAD). By means of BMA, frequency and severity distributions were established, and a final posterior distribution including model uncertainty is constructed by a weighted combination of the different models. The proposed approach, by dealing with lack of data and lack of knowledge, allows for a general reduction of the uncertainty in the calculated risk indicators, which is beneficial for informed decision-making strategies under uncertainty

    Severe accident risks in fossil energy chains: A comparative analysis

    No full text
    Abstract Accidents in the energy sector have been identified as one of the main contributors to man-made disasters. The present work focuses on the assessment of severe accident risks relating to fossil energy chains. Evaluations were based on the highly comprehensive Energyrelated Severe Accident Database (ENSAD), which was established at the Paul Scherrer Institut (PSI). The historical experience represented in this database allows a detailed comparison of severe accident risks in the broader energy sector. The analyses are not limited to power plants, but cover full energy chains, showing that immediate fatality rates are much higher for full fossil chains than expected if only power plants are considered. The different energy chains were analyzed separately, addressing selected technical aspects of severe accidents, followed by comparative evaluations. Generally, immediate fatality rates are significantly lower for countries of the Organization for Economic Co-operation and Development (OECD) and European Union 25 countries (EU25) than for non-OECD countries. In addition to aggregated values, frequency-consequence curves are also provided, since they not only reflect implicitly a ranking based on aggregated values, but also include information such as the maximum credible extent of damages.

    Research Note on the Energy Infrastructure Attack Database (EIAD)

    No full text
    The January 2013 attack on the In Amenas natural gas facility drew international attention. However this attack is part of a portrait of energy infrastructure targeting by non-state actors that spans the globe. Data drawn from the Energy Infrastructure Attack Database (EIAD) shows that in the last decade there were, on average, nearly 400 annual attacks carried out by armed non-state actors on energy infrastructure worldwide, a figure that was well under 200 prior to 1999. This data reveals a global picture whereby violent non-state actors target energy infrastructures to air grievances, communicate to governments, impact state economic interests, or capture revenue in the form of hijacking, kidnapping ransoms, theft. And, for politically motivated groups, such as those engaged in insurgencies, attacking industry assets garners media coverage serving as a facilitator for international attention. This research note will introduce EIAD and position its utility within various research areas where the targeting of energy infrastructure, or more broadly energy infrastructure vulnerability, has been addressed, either directly or indirectly. We also provide a snapshot of the initial analysis of the data between 1980-2011, noting specific temporal and spatial trends, and then conclude with a brief discussion on the contribution of EIAD, highlighting future research trajectories.&nbsp;</p

    Accident risk assessment for solar photovoltaic manufacturing

    No full text
    In the broader context of the energy transition and the goal to achieve net-zero greenhouse gas emissions by 2050, it is of major interest to have a comparative perspective on risks related to accidents for a broad range of energy technologies. This is an essential contribution to support stakeholders in complex decision-making processes to plan, design and establish supply chains that are economic, efficient, reliable, safe, secure, and sustainable. Among renewable technologies, solar photovoltaic (PV) is expected to be a major contributor. Therefore, this study presents a first step on the assessment of accident risk considering a full-chain perspective for current and future PV technologies to be included in a comparative assessment for energy technologies. In particular, it focused on the comparative accident risk assessment for PV manufacturing. Designated hazardous substances involved in PV manufacturing chains are selected from life cycle inventories to characterize the risk of PV production processes. The assessment quantitatively estimated the accident risk of hazardous substances with risk indicators, e.g., fatality rate, using global historical data collected from multiple industrial accident databases. The hazardous substances risk indicators are allocated to the PV technologies to estimate manufacturing accident risk, and to compare their relative contributions to overall PV indicators. Results indicate that hydrochloric acid, hydrofluoric acid, and sodium hydroxide are the most significant hazardous substances. Furthermore, among the considered PV technologies, results reveal that copper-indium-gallium-diselenide (CIGS) panels have the worst risk performance compared to the other technologies, while cadmium telluride (CdTe) panels performed best
    corecore