9 research outputs found

    Relationship between maternally derived anti-plasmodium falciparum antibodies and risk of infection and disease in infants living in an area of Liberia, West Africa, in which malaria is highly endemic

    No full text
    In areas where Plasmodium falciparum is endemic, immunoglobulin G is acquired by the fetus in utero, mainly during the third trimester of pregnancy. The potential protective effect of transferred anti-P. falciparum maternal antibodies was examined in a longitudinal study of 100 infants from birth to 1 year of age. The probability of acquiring a P. falciparum infection and developing an episode of clinical malaria was determined in relation to the P. falciparum-specific antibody level of the infant at birth against P. falciparum schizont antigen or recombinant merozoite surface protein MSP1(19) antigen. The risk of acquiring an episode of clinical malaria increased from birth to 6 months of age, after which it decreased. The overall prevalence of P. falciparum parasitemia was highest (48.9%) in the 6-month-old infants. The age-specific hematocrit value showed the lowest mean value (30.2) from 6 to 9 months, and the spleen rate was the highest (69.8%) at the same age. There was a lower risk of developing an episode of clinical malaria during the first year of life in the infants with high levels of anti-MSP1(19) antibodies at birth. The level of maternally derived overall anti-schizont antigen antibodies did not seem to play a role in the relative risk of developing malaria infection or disease during the first year of life, though the level of specific anti-MSP1(19) antibodies may be associated with protection

    Assessing the genetic architecture of epithelial ovarian cancer histological subtypes

    No full text
    Epithelial ovarian cancer (EOC) is one of the deadliest common cancers. The five most common types of disease are high-grade and low-grade serous, endometrioid, mucinous and clear cell carcinoma. Each of these subtypes present distinct molecular pathogeneses and sensitivities to treatments. Recent studies show that certain genetic variants confer susceptibility to all subtypes while other variants are subtype-specific. Here, we perform an extensive analysis of the genetic architecture of EOC subtypes. To this end, we used data of 10,014 invasive EOC patients and 21,233 controls from the Ovarian Cancer Association Consortium genotyped in the iCOGS array (211,155 SNPs). We estimate the array heritability (attributable to variants tagged on arrays) of each subtype and their genetic correlations. We also look for genetic overlaps with factors such as obesity, smoking behaviors, diabetes, age at menarche and height. We estimated the array heritabilities of high-grade serous disease ([Formula: see text]\ua0=\ua08.8\ua0±\ua01.1\ua0%), endometrioid ([Formula: see text]\ua0=\ua03.2\ua0±\ua01.6\ua0%), clear cell ([Formula: see text]\ua0=\ua06.7\ua0±\ua03.3\ua0%) and all EOC ([Formula: see text]\ua0=\ua05.6\ua0±\ua00.6\ua0%). Known associated loci contributed approximately 40\ua0% of the total array heritability for each subtype. The contribution of each chromosome to the total heritability was not proportional to chromosome size. Through bivariate and cross-trait LD score regression, we found evidence of shared genetic backgrounds between the three high-grade subtypes: serous, endometrioid and undifferentiated. Finally, we found significant genetic correlations of all EOC with diabetes and obesity using a polygenic prediction approach

    Immune responses to Plasmodium falciparum–merozoite surface protein 1 (MSP1) antigen, II. Induction of parasite-specific immunoglobulin G in unsensitized human B cells after in vitro T-cell priming with MSP119

    No full text
    A baculovirus recombinant antigen corresponding to the C-terminal 19 000 MW fragment of Plasmodium falciparum merozoite surface protein 1 (MSP119), has been used to prime T cells from individuals with no previous exposure to malaria, to provide help for the induction of a parasite specific antibody response in vitro. Although MSP119 alone could induce a small but detectable T-cell response, which included interleukin-4 (IL-4) secretion, this response was significantly increased by the presence of IL-2. In addition, IL-4 was shown to synergize with IL-2 for the induction of antigen-specific T-cell responses. If interferon-γ (IFN-γ), IL-12, or neutralizing anti-IL-4 antibody was present at the time of priming, the T-cell responses were abolished. Parasite-specific immunoglobulin G (IgG) could be detected after secondary restimulation with MSP119, IL-10 and anti-CD40 monoclonal antibody in cultures containing MSP119 primed T cells, autologous B cells, IL-2 and IL-4. No antibody was secreted in the absence of primed T cells in this B-cell culture assay. These data show that recombinant MSP119, a leading malaria vaccine candidate, can prime non-immune human lymphocytes under defined in vitro experimental conditions, which include regulatory cytokines and/or other costimulatory molecules. This is a complementary approach for exploring immunogenic mechanisms of potential vaccine candidates such as P. falciparum antigens in humans

    Progress toward a malaria vaccine: Efficient induction of protective anti-malaria immunity

    No full text
    Malaria can be a very severe disease, particularly in young children, pregnant women (mostly in primipara), and malaria naive adults, and currently ranks among the most prevalent infections in tropical and subtropical areas throughout the world. the widespread occurrence and the increased incidence of malaria in many countries, caused by drug-resistant parasites (Plasmodium falciparum and P. vivax) and insecticide-resistant vectors (Anopheles mosquitoes), indicate the need to develop new methods of controlling this disease.Experimental vaccination with irradiated sporozoites can protect animals and humans against the disease, demonstrating the feasibility of developing an effective malaria vaccine. However, developing a universally effective, long lasting vaccine against this parasitic disease has been a difficult task, due to several problems. One difficulty stems from the complexity of the parasite's life cycle. During their life cycle, malaria parasites change their residence within the host, thus avoiding being re-exposed to the same immunological environment. These parasites also possess some distinct antigens, present at different life stages of the parasite, the so-called stage-specific antigens, While some of the stage-specific antigens can induce protective immune responses in the host, these responses are usually genetically restricted, this being another reason for delaying the development of a universally effective vaccine. the stage-specific antigens must be used as immunogens and introduced into the host by using a delivery system that should efficiently induce protective responses against the respective stages. Here we review several research approaches aimed at inducing protective anti-malaria immunity, overcoming the difficulties described above.NYU, Sch Med, Dept Med & Mol Parasitol, New York, NY 10010 USAUniversidade Federal de São Paulo, Dept Microbiol Imunol & Parasitol, BR-04023062 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Microbiol Imunol & Parasitol, BR-04023062 São Paulo, BrazilWeb of Scienc

    etramps, a New Plasmodium falciparum Gene Family Coding for Developmentally Regulated and Highly Charged Membrane Proteins Located at the Parasite–Host Cell Interface

    No full text
    After invasion of erythrocytes, the human malaria parasite Plasmodium falciparum resides within a parasitophorous vacuole and develops from morphologically and metabolically distinct ring to trophozoite stages. During these developmental phases, major structural changes occur within the erythrocyte, but neither the molecular events governing this development nor the molecular composition of the parasitophorous vacuole membrane (PVM) is well known. Herein, we describe a new family of highly cationic proteins from P. falciparum termed early transcribed membrane proteins (ETRAMPs). Thirteen members were identified sharing a conserved structure, of which six were found only during ring stages as judged from Northern and Western analysis. Other members showed different stage-specific expression patterns. Furthermore, ETRAMPs were associated with the membrane fractions in Western blots, and colocalization and selective permeabilization studies demonstrated that ETRAMPs were located in the PVM. This was confirmed by immunoelectron microscopy where the PVM and tubovesicular extensions of the PVM were labeled. Early expressed ETRAMPs clearly defined separate PVM domains compared with the negatively charged integral PVM protein EXP-1, suggesting functionally different domains in the PVM with an oppositely charged surface coat. We also show that the dynamic change of ETRAMP composition in the PVM coincides with the morphological changes during development. The P. falciparum PVM is an important structure for parasite survival, and its analysis might provide better understanding of the requirements of intracellular parasites

    Shared genetics underlying epidemiological association between endometriosis and ovarian cancer

    No full text
    Contains fulltext : 153959.pdf (publisher's version ) (Closed access)Epidemiological studies have demonstrated associations between endometriosis and certain histotypes of ovarian cancer, including clear cell, low-grade serous and endometrioid carcinomas. We aimed to determine whether the observed associations might be due to shared genetic aetiology. To address this, we used two endometriosis datasets genotyped on common arrays with full-genome coverage (3194 cases and 7060 controls) and a large ovarian cancer dataset genotyped on the customized Illumina Infinium iSelect (iCOGS) arrays (10 065 cases and 21 663 controls). Previous work has suggested that a large number of genetic variants contribute to endometriosis and ovarian cancer (all histotypes combined) susceptibility. Here, using the iCOGS data, we confirmed polygenic architecture for most histotypes of ovarian cancer. This led us to evaluate if the polygenic effects are shared across diseases. We found evidence for shared genetic risks between endometriosis and all histotypes of ovarian cancer, except for the intestinal mucinous type. Clear cell carcinoma showed the strongest genetic correlation with endometriosis (0.51, 95% CI = 0.18-0.84). Endometrioid and low-grade serous carcinomas had similar correlation coefficients (0.48, 95% CI = 0.07-0.89 and 0.40, 95% CI = 0.05-0.75, respectively). High-grade serous carcinoma, which often arises from the fallopian tubes, showed a weaker genetic correlation with endometriosis (0.25, 95% CI = 0.11-0.39), despite the absence of a known epidemiological association. These results suggest that the epidemiological association between endometriosis and ovarian adenocarcinoma may be attributable to shared genetic susceptibility loci
    corecore