405 research outputs found

    Tensile Membrane Action of Thin Slabs Exposed to Thermal Gradients

    Get PDF
    A number of simplified design methods have been developed to predict composite slab capacities in fire. Most of these extend ambient-temperature large-deflection slab behavior to the elevated-temperature phase by reducing the strengths of fire-exposed concrete and reinforcement while neglecting the effects of thermal expansion and thermal bowing of the slab. Experiments have shown that there are significant differences between the predictions from these methods and the actual behavior and failure modes of ambient- and elevated-temperature concrete slabs in tensile membrane action. Therefore, this paper describes the development of a new analytical method that incorporates both thermal and mechanical effects into the prediction of slab behavior in fire conditions. It uses the variational Rayleigh-Ritz approach to classical large-deflection plate theory. The method is found to produce accurate predictions of deflections and membrane tractions; however, it requires further refinement for accuracy of stresses. The results are compared with numerical modeling using VULCAN, a specialist finite-element (FE) program for structural fire engineering

    Real-time Classification of Vehicle Types within Infra-red Imagery

    Get PDF
    Real-time classification of vehicles into sub-category types poses a significant challenge within infra-red imagery due to the high levels of intra-class variation in thermal vehicle signatures caused by aspects of design, current operating duration and ambient thermal conditions. Despite these challenges, infra-red sensing offers significant generalized target object detection advantages in terms of all-weather operation and invariance to visual camouflage techniques. This work investigates the accuracy of a number of real-time object classification approaches for this task within the wider context of an existing initial object detection and tracking framework. Specifically we evaluate the use of traditional feature-driven bag of visual words and histogram of oriented gradient classification approaches against modern convolutional neural network architectures. Furthermore, we use classical photogrammetry, within the context of current target detection and classification techniques, as a means of approximating 3D target position within the scene based on this vehicle type classification. Based on photogrammetric estimation of target position, we then illustrate the use of regular Kalman filter based tracking operating on actual 3D vehicle trajectories. Results are presented using a conventional thermal-band infra-red (IR) sensor arrangement where targets are tracked over a range of evaluation scenarios

    Black hole collision with a scalar particle in four, five and seven dimensional anti-de Sitter spacetimes: ringing and radiation

    Full text link
    In this work we compute the spectra, waveforms and total scalar energy radiated during the radial infall of a small test particle coupled to a scalar field into a dd-dimensional Schwarzschild-anti-de Sitter black hole. We focus on d=4,5d=4, 5 and 7, extending the analysis we have done for d=3d=3. For small black holes, the spectra peaks strongly at a frequency ωd1\omega \sim d-1, which is the lowest pure anti-de Sitter (AdS) mode. The waveform vanishes exponentially as tt \to \infty, and this exponential decay is governed entirely by the lowest quasinormal frequency. This collision process is interesting from the point of view of the dynamics itself in relation to the possibility of manufacturing black holes at LHC within the brane world scenario, and from the point of view of the AdS/CFT conjecture, since the scalar field can represent the string theory dilaton, and 4, 5, 7 are dimensions of interest for the AdS/CFT correspondence.Comment: 16 pages, 13 figures. Published versio

    Cosmological Creation of D-branes and anti-D-branes

    Full text link
    We argue that the early universe may be described by an initial state of space-filling branes and anti-branes. At high temperature this system is stable. At low temperature tachyons appear and lead to a phase transition, dynamics, and the creation of D-branes. These branes are cosmologically produced in a generic fashion by the Kibble mechanism. From an entropic point of view, the formation of lower dimensional branes is preferred and D3D3 brane-worlds are exponentially more likely to form than higher dimensional branes. Virtually any brane configuration can be created from such phase transitions by adjusting the tachyon profile. A lower bound on the number defects produced is: one D-brane per Hubble volume.Comment: 30 pages, 5 eps figures; v2 more references added; v3 section 4 slightly improve

    Oxidised cosmic acceleration

    Full text link
    We give detailed proofs of several new no-go theorems for constructing flat four-dimensional accelerating universes from warped dimensional reduction. These new theorems improve upon previous ones by weakening the energy conditions, by including time-dependent compactifications, and by treating accelerated expansion that is not precisely de Sitter. We show that de Sitter expansion violates the higher-dimensional null energy condition (NEC) if the compactification manifold M is one-dimensional, if its intrinsic Ricci scalar R vanishes everywhere, or if R and the warp function satisfy a simple limit condition. If expansion is not de Sitter, we establish threshold equation-of-state parameters w below which accelerated expansion must be transient. Below the threshold w there are bounds on the number of e-foldings of expansion. If M is one-dimensional or R everywhere vanishing, exceeding the bound implies the NEC is violated. If R does not vanish everywhere on M, exceeding the bound implies the strong energy condition (SEC) is violated. Observationally, the w thresholds indicate that experiments with finite resolution in w can cleanly discriminate between different models which satisfy or violate the relevant energy conditions.Comment: v2: corrections, references adde

    Unconventional Cosmology

    Full text link
    I review two cosmological paradigms which are alternative to the current inflationary scenario. The first alternative is the "matter bounce", a non-singular bouncing cosmology with a matter-dominated phase of contraction. The second is an "emergent" scenario, which can be implemented in the context of "string gas cosmology". I will compare these scenarios with the inflationary one and demonstrate that all three lead to an approximately scale-invariant spectrum of cosmological perturbations.Comment: 45 pages, 10 figures; invited lectures at the 6th Aegean Summer School "Quantum Gravity and Quantum Cosmology", Chora, Naxos, Greece, Sept. 12 - 17 2012, to be publ. in the proceedings; these lecture notes form an updated version of arXiv:1003.1745 and arXiv:1103.227

    Developing a framework to improve global estimates of conservation area coverage

    Get PDF
    Area-based conservation is a widely used approach for maintaining biodiversity, and there are ongoing discussions over what is an appropriate global conservation area coverage target. To inform such debates, it is necessary to know the extent and ecological representativeness of the current conservation area network, but this is hampered by gaps in existing global datasets. In particular, although data on privately and community-governed protected areas and other effective area-based conservation measures are often available at the national level, it can take many years to incorporate these into official datasets. This suggests a complementary approach is needed based on selecting a sample of countries and using their national-scale datasets to produce more accurate metrics. However, every country added to the sample increases the costs of data collection, collation and analysis. To address this, here we present a data collection framework underpinned by a spatial prioritization algorithm, which identifies a minimum set of countries that are also representative of 10 factors that influence conservation area establishment and biodiversity patterns. We then illustrate this approach by identifying a representative set of sampling units that cover 10% of the terrestrial realm, which included areas in only 25 countries. In contrast, selecting 10% of the terrestrial realm at random included areas across a mean of 162 countries. These sampling units could be the focus of future data collation on different types of conservation area. Analysing these data could produce more rapid and accurate estimates of global conservation area coverage and ecological representativeness, complementing existing international reporting systems

    Lorentz breaking Effective Field Theory and observational tests

    Full text link
    Analogue models of gravity have provided an experimentally realizable test field for our ideas on quantum field theory in curved spacetimes but they have also inspired the investigation of possible departures from exact Lorentz invariance at microscopic scales. In this role they have joined, and sometime anticipated, several quantum gravity models characterized by Lorentz breaking phenomenology. A crucial difference between these speculations and other ones associated to quantum gravity scenarios, is the possibility to carry out observational and experimental tests which have nowadays led to a broad range of constraints on departures from Lorentz invariance. We shall review here the effective field theory approach to Lorentz breaking in the matter sector, present the constraints provided by the available observations and finally discuss the implications of the persisting uncertainty on the composition of the ultra high energy cosmic rays for the constraints on the higher order, analogue gravity inspired, Lorentz violations.Comment: 47 pages, 4 figures. Lecture Notes for the IX SIGRAV School on "Analogue Gravity", Como (Italy), May 2011. V.3. Typo corrected, references adde
    corecore