509 research outputs found

    235 Using HbAlc and random blood glucose to screen for cystic fibrosis related diabetes (CFRD)

    Get PDF

    Combatting electoral traces: the Dutch tempest discussion and beyond

    Get PDF
    In the Dutch e-voting debate, the crucial issue leading to the abandonment of all electronic voting machines was compromising radiation, or tempest. Other countries, however, do not seem to be bothered by this risk. In this paper, we use actor-network theory to analyse the socio-technical origins of the Dutch tempest issue in e-voting, and its consequences for e-voting beyond the Netherlands. We introduce the term electoral traces to denote any physical, digital or social evidence of a voter's choices in an election. From this perspective, we provide guidelines for risk analysis as well as an overview of countermeasures

    Economic analysis of deforestation in Mexico

    Get PDF
    This paper uses panel analyses to estimate relationships for agricultural planted area and beef cattle numbers at the state level in Mexico during the periods 1970-85, in order to determine the main factors affecting forest land conversion. Of the key policy variables, maize and fertilizer prices appear to be the main influences on the expansion of planted area, whereas beef prices and credit disbursement influence cattle numbers. Population growth also affects both livestock and agricultural activities, and income per capita is positively correlated with cattle expansion. These estimated relationships are used to examine the effects both of agricultural and livestock sectoral policy changes and of trade liberalization in Mexico resulting from the North American Free Trade Agreement (NAFTA). To avoid any unintended impacts of NAFTA on Deforestation, it may be necessary for Mexico to make complementary investments in Land improvements, especially for existing cultivation on rain fed land

    Tuned MSSM Higgses as an inflaton

    Full text link
    We consider the possibility that the vacuum energy density of the MSSM (Minimal Supersymmetric Standard Model) flat direction condensate involving the Higgses H_1 and H_2 is responsible for inflation. We also discuss how the finely tuned Higgs potential at high vacuum expectation values can realize {\it cosmologically} flat direction along which it can generate the observed density perturbations, and after the end of inflation -- the coherent oscillations of the Higgses reheat the universe with all the observed degrees of freedom, without causing any problem for the electroweak phase transition.Comment: 6 pages, 5 figure

    On three dimensional bosonization

    Full text link
    We discuss Abelian and non-Abelian three dimensional bosonization within the path-integral framework. We present a systematic approach leading to the construction of the bosonic action which, together with the bosonization recipe for fermion currents, describes the original fermion system in terms of vector bosons.Comment: 15 pages, LaTe

    Inflection point inflation: WMAP constraints and a solution to the fine-tuning problem

    Full text link
    We consider observational constraints and fine-tuning issues in a renormalizable model of inflection point inflation, with two independent parameters. We derive constraints on the parameter space of this model arising from the WMAP 7-year power spectrum. It has previously been shown that it is possible to successfully embed this potential in the MSSM. Unfortunately, to do this requires severe fine-tuning. We address this issue by introducing a hybrid field to dynamically uplift the potential with a subsequent smooth phase transition to end inflation at the necessary point. Large parameter regions exist where this drastically reduces the fine-tuning required without ruining the viability of the model. A side effect of this mechanism is that it increases the width of the slow-roll region of the potential, thus also alleviating the problem of the fine-tuning of initial conditions. The MSSM embedding we study has been previously shown to be able to explain the smallness of the neutrino masses. The hybrid transition does not spoil this feature as there exist parameter regions where the fine-tuning parameter is as large as 10110^{-1} and the neutrino masses remain small.Comment: 12 pages, 2 figures, JCAP style. Version accepted for publication in JCAP. Modifications made to improve readability, as requested by the referee; results and conclusions unchanged. References update

    Inflection point inflation within supersymmetry

    Full text link
    We propose to address the fine tuning problem of inflection point inflation by the addition of extra vacuum energy that is present during inflation but disappears afterwards. We show that in such a case, the required amount of fine tuning is greatly reduced. We suggest that the extra vacuum energy can be associated with an earlier phase transition and provide a simple model, based on extending the SM gauge group to SU(3)_C \times SU(2)_L\times U(1)_Y\times U(1)_{B-L}, where the Higgs field of U(1)_{B-L} is in a false vacuum during inflation. In this case, there is virtually no fine tuning of the soft SUSY breaking parameters of the flat direction which serves as the inflaton. However, the absence of radiative corrections which would spoil the flatness of the inflaton potential requires that the U(1)_{B-L} gauge coupling should be small with g_{B-L}\leq 10^{-4}.Comment: 6 pages, 1 figur

    The δN formula is the dynamical renormalization group

    Get PDF
    We derive the 'separate universe' method for the inflationary bispectrum, beginning directly from a field-theory calculation. We work to tree-level in quantum effects but to all orders in the slow-roll expansion, with masses accommodated perturbatively. Our method provides a systematic basis to account for novel sources of time-dependence in inflationary correlation functions, and has immediate applications. First, we use our result to obtain the correct matching prescription between the 'quantum' and 'classical' parts of the separate universe computation. Second, we elaborate on the application of this method in situations where its validity is not clear. As a by-product of our calculation we give the leading slow-roll corrections to the three-point function of field fluctuations on spatially flat hypersurfaces in a canonical, multiple-field model.Comment: v1: 33 pages, plus appendix and references; 5 figures. v2: typographical typos fixed, minor changes to the main text and abstract, reference added; matches version published in JCA

    From semiclassical transport to quantum Hall effect under low-field Landau quantization

    Full text link
    The crossover from the semiclassical transport to quantum Hall effect is studied by examining a two-dimensional electron system in an AlGaAs/GaAs heterostructure. By probing the magneto-oscillations, it is shown that the semiclassical Shubnikov-de Haas (SdH) formulation can be valid even when the minima of the longitudinal resistivity approach zero. The extension of the applicable range of the SdH theory could be due to the damping effects resulting from disorder and temperature. Moreover, we observed plateau-plateau transition like behavior with such an extension. From our study, it is important to include the positive magnetoresistance to refine the SdH theory.Comment: 11 pages, 5 figure

    Squeezed States in the de Sitter Vacuum

    Full text link
    We discuss the treatment of squeezed states as excitations in the Euclidean vacuum of de Sitter space. A comparison with the treatment of these states as candidate no-particle states, or alpha-vacua, shows important differences already in the free theory. At the interacting level alpha-vacua are inconsistent, but squeezed state excitations seem perfectly acceptable. Indeed, matrix elements can be renormalized in the excited states using precisely the standard local counterterms of the Euclidean vacuum. Implications for inflationary scenarios in cosmology are discussed.Comment: 15 pages, no figures. One new citation in version 3; no other change
    corecore