536 research outputs found

    D-Brane Dynamics and NS5 Rings

    Full text link
    We consider the classical motion of a probe D-brane moving in the background geometry of a ring of NS5 branes, assuming that the latter are non-dynamical. We analyse the solutions to the Dirac-Born-Infield (DBI) action governing the approximate dynamics of the system. In the near horizon (throat) approximation we find several exact solutions for the probe brane motion. These are compared to numerical solutions obtained in more general cases. One solution of particular interest is when the probe undergoes oscillatory motion through the centre of the ring (and perpendicular to it). By taking the ring radius sufficiently large, this solution should remain stable to any stringy corrections coming from open-strings stretching between the probe and the NS5-branes along the ring.Comment: 17 pages, Latex, 8 figures; References adde

    The Atomic Physics Underlying the Spectroscopic Analysis of Massive Stars and Supernovae

    Full text link
    We have developed a radiative transfer code, CMFGEN, which allows us to model the spectra of massive stars and supernovae. Using CMFGEN we can derive fundamental parameters such as effective temperatures and surface gravities, derive abundances, and place constraints on stellar wind properties. The last of these is important since all massive stars are losing mass via a stellar wind that is driven from the star by radiation pressure, and this mass loss can substantially influence the spectral appearance and evolution of the star. Recently we have extended CMFGEN to allow us to undertake time-dependent radiative transfer calculations of supernovae. Such calculations will be used to place constraints on the supernova progenitor, to place constraints on the supernova explosion and nucleosynthesis, and to derive distances using a physical approach called the "Expanding Photosphere Method". We describe the assumptions underlying the code and the atomic processes involved. A crucial ingredient in the code is the atomic data. For the modeling we require accurate transition wavelengths, oscillator strengths, photoionization cross-sections, collision strengths, autoionization rates, and charge exchange rates for virtually all species up to, and including, cobalt. Presently, the available atomic data varies substantially in both quantity and quality.Comment: 8 pages, 2 figures, Accepted for publication in Astrophysics & Space Scienc

    Doctors and nurses subjective predictions of 6-month outcome compared to actual 6-month outcome for adult patients with spontaneous intracerebral haemorrhage (ICH) in neurocritical care: An observational study.

    Get PDF
    Acute spontaneous intracerebral haemorrhage is a devastating form of stroke. Prognostication after ICH may be influenced by clinicians' subjective opinions. To evaluate subjective predictions of 6-month outcome by clinicians' for ICH patients in a neurocritical care using the modified Rankin Scale (mRS) and compare these to actual 6-month outcome. We included clinicians' predictions of 6-month outcome in the first 48 h for 52 adults with ICH and compared to actual 6-month outcome using descriptive statistics and multilevel binomial logistic regression. 35/52 patients (66%) had a poor 6-month outcome (mRS 4-6); 19/52 (36%) had died. 324 predictions were included. For good (mRS 0-3) versus poor (mRS 4-6), outcome, accuracy of predictions was 68% and exact agreement 29%. mRS 6 and mRS 4 received the most correct predictions. Comparing job roles, predictions of death were underestimated, by doctors (12%) and nurses (13%) compared with actual mortality (36%). Predictions of vital status showed no significant difference between doctors and nurses: OR = 1.24 {CI; 0.50-3.05}; (  = 0.64) or good versus poor outcome: OR = 1.65 {CI; 0.98-2.79}; (  = 0.06). When predicted and actual 6-month outcome were compared, job role did not significantly relate to correct predictions of good versus poor outcome: OR = 1.13 {CI;0.67-1.90}; (  = 0.65) or for vital status: OR = 1.11 {CI; 0.47-2.61};  = 0.81). Early prognostication is challenging. Doctors and nurses were most likely to correctly predict poor outcome but tended to err on the side of optimism for mortality, suggesting an absence of clinical nihilism in relation to ICH. [Abstract copyright: © 2024 The Authors. Published by Elsevier B.V.

    Separable and non-separable multi-field inflation and large non-Gaussianity

    Full text link
    In this paper we provide a general framework based on δN\delta N formalism to estimate the cosmological observables pertaining to the cosmic microwave background radiation for non-separable potentials, and for generic \emph{end of inflation} boundary conditions. We provide analytical and numerical solutions to the relevant observables by decomposing the cosmological perturbations along the curvature and the isocurvature directions, \emph{instead of adiabatic and entropy directions}. We then study under what conditions large bi-spectrum and tri-spectrum can be generated through phase transition which ends inflation. In an illustrative example, we show that large fNL∼O(80)f_{NL}\sim {\cal O}(80) and τNL∼O(20000)\tau_{NL}\sim {\cal O}(20000) can be obtained for the case of separable and non-separable inflationary potentials.Comment: 21 pages, 6 figure

    Super-Hubble de Sitter Fluctuations and the Dynamical RG

    Full text link
    Perturbative corrections to correlation functions for interacting theories in de Sitter spacetime often grow secularly with time, due to the properties of fluctuations on super-Hubble scales. This growth can lead to a breakdown of perturbation theory at late times. We argue that Dynamical Renormalization Group (DRG) techniques provide a convenient framework for interpreting and resumming these secularly growing terms. In the case of a massless scalar field in de Sitter with quartic self-interaction, the resummed result is also less singular in the infrared, in precisely the manner expected if a dynamical mass is generated. We compare this improved infrared behavior with large-N expansions when applicable.Comment: 33 pages, 4 figure

    Breakdown of Semiclassical Methods in de Sitter Space

    Full text link
    Massless interacting scalar fields in de Sitter space have long been known to experience large fluctuations over length scales larger than Hubble distances. A similar situation arises in condensed matter physics in the vicinity of a critical point, and in this better-understood situation these large fluctuations indicate the failure in this regime of mean-field methods. We argue that for non-Goldstone scalars in de Sitter space, these fluctuations can also be interpreted as signaling the complete breakdown of the semi-classical methods widely used throughout cosmology. By power-counting the infrared properties of Feynman graphs in de Sitter space we find that for a massive scalar interacting through a \lambda \phi^4$ interaction, control over the loop approximation is lost for masses smaller than m \simeq \sqrt \lambda H/2\pi, where H is the Hubble scale. We briefly discuss some potential implications for inflationary cosmology.Comment: 24 pages, 7 figures, v2; added references, clarified the resummation discussio

    Peripheral glycolysis in neurodegenerative diseases

    Get PDF
    Neurodegenerative diseases are a group of nervous system conditions characterised pathologically by the abnormal deposition of protein throughout the brain and spinal cord. One common pathophysiological change seen in all neurodegenerative disease is a change to the metabolic function of nervous system and peripheral cells. Glycolysis is the conversion of glucose to pyruvate or lactate which results in the generation of ATP and has been shown to be abnormal in peripheral cells in Alzheimer’s disease, Parkinson’s disease, and Amyotrophic Lateral Sclerosis. Changes to the glycolytic pathway are seen early in neurodegenerative disease and highlight how in multiple neurodegenerative conditions pathology is not always confined to the nervous system. In this paper, we review the abnormalities described in glycolysis in the three most common neurodegenerative diseases. We show that in all three diseases glycolytic changes are seen in fibroblasts, and red blood cells, and that liver, kidney, muscle and white blood cells have abnormal glycolysis in certain diseases. We highlight there is potential for peripheral glycolysis to be developed into multiple types of disease biomarker, but large-scale bio sampling and deciphering how glycolysis is inherently altered in neurodegenerative disease in multiple patients’ needs to be accomplished first to meet this aim

    Seasonal, episodic and periodic changes in terrestrial water storage recorded By DEEP Piezometric Monitoring in the Ganges/Brahmaputra/Meghna DELTA

    Get PDF
    Piezometric monitoring in vertical profile at sites across the southern and coastal floodplains of the Ganges/Brahmaputra/Meghna (GBM) delta confirms gravitational flow in sediments of the Bengal Aquifer System (BAS) to a depth of at least 320 m (the maximum depth of measurement). Individual and paired records of groundwater head indicate seasonal recovery and recession of water storage, periodic and episodic ground surface loading, and earth tide responses. Lunar periodicity in groundwater head fluctuation coincident with tide height at one coastal site is consistent with tidal surface loading/unloading. Diurnal tidal fluctuations in the same record change amplitude and shift phase with depth, also indicative of surface loading/unloading. Transience in the surface loading signals with depth is governed by the vertically integrated hydraulic properties of the thick BAS sedimentary sequence. Inland, earth tide responses of smaller amplitude and lacking phase shift with depth are ubiquitous in the background signal. Most records include clearly resolvable episodic deflections in the order of 0.1 m water head and up to 0.5 m water head, near simultaneous with depth, corresponding to individual episodes of rainfall. The episodic head deflections provide a record of change in terrestrial water storage (ΔTWS) comprising undifferentiated surface water flooding, soil moisture and shallow groundwater recharge – a direct land-based equivalent of satellite estimates of ΔTWS. Enigmatic short-term recession from individual deflection peaks may be related to elastic deformation and ground surface lowering under terrestrial water storage loading

    The δN formula is the dynamical renormalization group

    Get PDF
    We derive the 'separate universe' method for the inflationary bispectrum, beginning directly from a field-theory calculation. We work to tree-level in quantum effects but to all orders in the slow-roll expansion, with masses accommodated perturbatively. Our method provides a systematic basis to account for novel sources of time-dependence in inflationary correlation functions, and has immediate applications. First, we use our result to obtain the correct matching prescription between the 'quantum' and 'classical' parts of the separate universe computation. Second, we elaborate on the application of this method in situations where its validity is not clear. As a by-product of our calculation we give the leading slow-roll corrections to the three-point function of field fluctuations on spatially flat hypersurfaces in a canonical, multiple-field model.Comment: v1: 33 pages, plus appendix and references; 5 figures. v2: typographical typos fixed, minor changes to the main text and abstract, reference added; matches version published in JCA

    Effects of genuine dimension-six Higgs operators

    Get PDF
    We systematically discuss the consequences of genuine dimension-six Higgs operators. These operators are not subject to stringent constraints from electroweak precision data. However, they can modify the couplings of the Higgs boson to electroweak gauge bosons and, in particular, the Higgs self-interactions. We study the sensitivity to which those couplings can be probed at future \ee linear colliders in the sub-TeV and in the multi-TeV range. We find that for s=500\sqrt s=500 GeV with a luminosity of 1 ab−1^{-1} the anomalous WWHWWH and ZZHZZH couplings may be probed to about the 0.01 level, and the anomalous HHHHHH coupling to about the 0.1 level.Comment: 21 pages, 17 figures; typos corrected and references adde
    • …
    corecore