51 research outputs found

    A novel formulation technology for baculoviruses protects biopesticide from degradation by ultraviolet radiation

    Get PDF
    Biopesticides are biological pest control agents that are viewed as safer alternatives to the synthetic chemicals that dominate the global insecticide market. A major constraint on the wider adoption of biopesticides is their susceptibility to the ultraviolet (UV: 290–400 nm) radiation in sunlight, which limits their persistence and efficacy. Here, we describe a novel formulation technology for biopesticides in which the active ingredient (baculovirus) is micro-encapsulated in an ENTOSTAT wax combined with a UV absorbant (titanium dioxide, TiO2). Importantly, this capsule protects the sensitive viral DNA from degrading in sunlight, but dissolves in the alkaline insect gut to release the virus, which then infects and kills the pest. We show, using simulated sunlight, in both laboratory bioassays and trials on cabbage and tomato plants, that this can extend the efficacy of the biopesticide well beyond the few hours of existing virus formulations, potentially increasing the spray interval and/or reducing the need for high application rates. The new formulation has a shelf-life at 30 °C of at least 6 months, which is comparable to standard commercial biopesticides and has no phytotoxic effect on the host plants. Taken together, these findings suggest that the new formulation technology could reduce the costs and increase the efficacy of baculovirus biopesticides, with the potential to make them commercially competitive alternatives to synthetic chemicals

    Development of Metarhizium anisopliae and Beauveria bassiana formulations for control of malaria mosquito larvae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The entomopathogenic fungi <it>Metarhizium anisopliae </it>and <it>Beauveria bassiana </it>have demonstrated effectiveness against anopheline larvae in the laboratory. However, utilising these fungi for the control of anopheline larvae under field conditions, relies on development of effective means of application as well as reducing their sensitivity to UV radiation, high temperatures and the inevitable contact with water. This study was conducted to develop formulations that facilitate the application of <it>Metarhizium anisopliae </it>and <it>Beauveria bassiana </it>spores for the control of anopheline larvae, and also improve their persistence under field conditions.</p> <p>Methods</p> <p>Laboratory bioassays were conducted to test the ability of aqueous (0.1% Tween 80), dry (organic and inorganic) and oil (mineral and synthetic) formulations to facilitate the spread of fungal spores over the water surface and improve the efficacy of formulated spores against anopheline larvae as well as improve spore survival after application. Field bioassays were then carried out to test the efficacy of the most promising formulation under field conditions in western Kenya.</p> <p>Results</p> <p>When formulated in a synthetic oil (ShellSol T), fungal spores of both <it>Metarhizium anisopliae </it>and <it>Beauveria bassiana </it>were easy to mix and apply to the water surface. This formulation was more effective against anopheline larvae than 0.1% Tween 80, dry powders or mineral oil formulations. ShellSol T also improved the persistence of fungal spores after application to the water. Under field conditions in Kenya, the percentage pupation of <it>An. gambiae </it>was significantly reduced by 39 - 50% by the ShellSol T-formulated <it>Metarhizium anisopliae </it>and <it>Beauveria bassiana </it>spores as compared to the effects of the application of unformulated spores.</p> <p>Conclusions</p> <p>ShellSol T is an effective carrier for fungal spores when targeting anopheline larvae under both laboratory and field conditions. Entomopathogenic fungi formulated with a suitable carrier are a promising tool for control of larval populations of malaria mosquitoes. Additional studies are required to identify the best delivery method (where, when and how) to make use of the entomopathogenic potential of these fungi against anopheline larvae.</p

    From Disease Association to Risk Assessment: An Optimistic View from Genome-Wide Association Studies on Type 1 Diabetes

    Get PDF
    Genome-wide association studies (GWAS) have been fruitful in identifying disease susceptibility loci for common and complex diseases. A remaining question is whether we can quantify individual disease risk based on genotype data, in order to facilitate personalized prevention and treatment for complex diseases. Previous studies have typically failed to achieve satisfactory performance, primarily due to the use of only a limited number of confirmed susceptibility loci. Here we propose that sophisticated machine-learning approaches with a large ensemble of markers may improve the performance of disease risk assessment. We applied a Support Vector Machine (SVM) algorithm on a GWAS dataset generated on the Affymetrix genotyping platform for type 1 diabetes (T1D) and optimized a risk assessment model with hundreds of markers. We subsequently tested this model on an independent Illumina-genotyped dataset with imputed genotypes (1,008 cases and 1,000 controls), as well as a separate Affymetrix-genotyped dataset (1,529 cases and 1,458 controls), resulting in area under ROC curve (AUC) of ∼0.84 in both datasets. In contrast, poor performance was achieved when limited to dozens of known susceptibility loci in the SVM model or logistic regression model. Our study suggests that improved disease risk assessment can be achieved by using algorithms that take into account interactions between a large ensemble of markers. We are optimistic that genotype-based disease risk assessment may be feasible for diseases where a notable proportion of the risk has already been captured by SNP arrays

    Prevention of Honeybee Diseases

    No full text

    Entomopathogenic Fungi as Bioinsecticides

    No full text
    As early as 900 A.D., it was known in the Orient that fungi could grow in insects (Steinhaus, 1975). The pioneering work of Bassi with Beauveria bassiana in silkworms in 1834 proved that fungi could actually cause infectious diseases in insects. From the 1880s through the early 1900s, the spectacular epizootics caused by entomopathogenic fungi—fungi-infecting insects—led to studies of their potential use for pest control. Interest in fungi as pest control agents waned, however, as chemical insecticides were used more frequently. More recently, owing to the myriad difficulties that have been gradually encountered in the development and use of chemical insecticides, the field of biological control has been undergoing a renaissance. In particular, our knowledge of entomopathogenic fungi is at present increasing rapidly
    corecore