169 research outputs found

    Chordin Is a Modifier of Tbx1 for the Craniofacial Malformations of 22q11 Deletion Syndrome Phenotypes in Mouse

    Get PDF
    Point mutations in TBX1 can recapitulate many of the structural defects of 22q11 deletion syndromes (22q11DS), usually associated with a chromosomal deletion at 22q1.2. 22q11DS often includes specific cardiac and pharyngeal organ anomalies, but the presence of characteristic craniofacial defects is highly variable. Even among family members with a single TBX1 point mutation but no cytological deletion, cleft palate and low-set ears may or may not be present. In theory, such differences could depend on an unidentified, second-site lesion that modifies the craniofacial consequences of TBX1 deficiency. We present evidence for such a locus in a mouse model. Null mutations of chordin have been reported to cause severe defects recapitulating 22q11DS, which we show are highly dependent on genetic background. In an inbred strain in which chordin−/− is fully penetrant, we found a closely linked, strong modifier—a mutation in a Tbx1 intron causing severe splicing defects. Without it, lack of chordin results in a low penetrance of mandibular hypoplasia but no cardiac or thoracic organ malformations. This hypomorphic Tbx1 allele per se results in defects resembling 22q11DS but with a low penetrance of hallmark craniofacial malformations, unless chordin is mutant. Thus, chordin is a modifier for the craniofacial anomalies of Tbx1 mutations, demonstrating the existence of a second-site modifier for a specific subset of the phenotypes associated with 22q11DS

    RNA secondary structure prediction from multi-aligned sequences

    Full text link
    It has been well accepted that the RNA secondary structures of most functional non-coding RNAs (ncRNAs) are closely related to their functions and are conserved during evolution. Hence, prediction of conserved secondary structures from evolutionarily related sequences is one important task in RNA bioinformatics; the methods are useful not only to further functional analyses of ncRNAs but also to improve the accuracy of secondary structure predictions and to find novel functional RNAs from the genome. In this review, I focus on common secondary structure prediction from a given aligned RNA sequence, in which one secondary structure whose length is equal to that of the input alignment is predicted. I systematically review and classify existing tools and algorithms for the problem, by utilizing the information employed in the tools and by adopting a unified viewpoint based on maximum expected gain (MEG) estimators. I believe that this classification will allow a deeper understanding of each tool and provide users with useful information for selecting tools for common secondary structure predictions.Comment: A preprint of an invited review manuscript that will be published in a chapter of the book `Methods in Molecular Biology'. Note that this version of the manuscript may differ from the published versio

    Identifying and Characterizing a Novel Protein Kinase STK35L1 and Deciphering Its Orthologs and Close-Homologs in Vertebrates

    Get PDF
    The human kinome containing 478 eukaryotic protein kinases has over 100 uncharacterized kinases with unknown substrates and biological functions. The Ser/Thr kinase 35 (STK35, Clik1) is a member of the NKF 4 (New Kinase Family 4) in the kinome with unknown substrates and biological functions. Various high throughput studies indicate that STK35 could be involved in various human diseases such as colorectal cancer and malaria. In this study, we found that the previously published coding sequence of the STK35 gene is incomplete. The newly identified sequence of the STK35 gene codes for a protein of 534 amino acids with a N-terminal elongation of 133 amino acids. It has been designated as STK35L (STK35 long). Since it is the first of further homologous kinases we termed it as STK35L1. The STK35L1 protein (58 kDa on SDS-PAGE), but not STK35 (44 kDa), was found to be expressed in all human cells studied (endothelial cells, HeLa, and HEK cells) and was down-regulated after silencing with specific siRNA. EGFP-STK35L1 was localized in the nucleus and the nucleolus. By combining syntenic and gene structure pattern data and homology searches, two further STK35L1 homologs, STK35L2 (previously known as PDIK1L) and STK35L3, were found. All these protein kinase homologs were conserved throughout the vertebrates. The STK35L3 gene was specifically lost during placental mammalian evolution. Using comparative genomics, we have identified orthologous sets of these three protein kinases genes and their possible ancestor gene in two sea squirt genomes. We found the full-length coding sequence of the STK35 gene and termed it as STK35L1. We identified a new third STK35-like gene, STK35L3, in vertebrates and a possible ancestor gene in sea squirt genome. This study will provide a comprehensive platform to explore the role of STK35L kinases in cell functions and human diseases

    An experimental model of rhinovirus induced chronic obstructive pulmonary disease exacerbations: a pilot study

    Get PDF
    BACKGROUND: Acute exacerbations of COPD are a major cause of morbidity, mortality and hospitalisation. Respiratory viruses are associated with the majority of exacerbations but a causal relationship has not been demonstrated and the mechanisms of virus-induced exacerbations are poorly understood. Development of a human experimental model would provide evidence of causation and would greatly facilitate understanding mechanisms, but no such model exists. METHODS: We aimed to evaluate the feasibility of developing an experimental model of rhinovirus induced COPD exacerbations and to assess safety of rhinovirus infection in COPD patients. We carried out a pilot virus dose escalating study to assess the minimum dose of rhinovirus 16 required to induce experimental rhinovirus infection in subjects with COPD (GOLD stage II). Outcomes were assessed by monitoring of upper and lower respiratory tract symptoms, lung function, and virus replication and inflammatory responses in nasal lavage. RESULTS: All 4 subjects developed symptomatic colds with the lowest dose of virus tested, associated with evidence of viral replication and increased pro-inflammatory cytokines in nasal lavage. These were accompanied by significant increases in lower respiratory tract symptoms and reductions in PEF and FEV(1). There were no severe exacerbations or other adverse events. CONCLUSION: Low dose experimental rhinovirus infection in patients with COPD induces symptoms and lung function changes typical of an acute exacerbation of COPD, appears safe, and provides preliminary evidence of causation

    The nuclear receptors of Biomphalaria glabrata and Lottia gigantea: Implications for developing new model organisms

    Get PDF
    © 2015 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedNuclear receptors (NRs) are transcription regulators involved in an array of diverse physiological functions including key roles in endocrine and metabolic function. The aim of this study was to identify nuclear receptors in the fully sequenced genome of the gastropod snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni and compare these to known vertebrate NRs, with a view to assessing the snail's potential as a invertebrate model organism for endocrine function, both as a prospective new test organism and to elucidate the fundamental genetic and mechanistic causes of disease. For comparative purposes, the genome of a second gastropod, the owl limpet, Lottia gigantea was also investigated for nuclear receptors. Thirty-nine and thirty-three putative NRs were identified from the B. glabrata and L. gigantea genomes respectively, based on the presence of a conserved DNA-binding domain and/or ligand-binding domain. Nuclear receptor transcript expression was confirmed and sequences were subjected to a comparative phylogenetic analysis, which demonstrated that these molluscs have representatives of all the major NR subfamilies (1-6). Many of the identified NRs are conserved between vertebrates and invertebrates, however differences exist, most notably, the absence of receptors of Group 3C, which includes some of the vertebrate endocrine hormone targets. The mollusc genomes also contain NR homologues that are present in insects and nematodes but not in vertebrates, such as Group 1J (HR48/DAF12/HR96). The identification of many shared receptors between humans and molluscs indicates the potential for molluscs as model organisms; however the absence of several steroid hormone receptors indicates snail endocrine systems are fundamentally different.The National Centre for the Replacement, Refinement and Reduction of Animals in Research, Grant Ref:G0900802 to CSJ, LRN, SJ & EJR [www.nc3rs.org.uk]

    High-throughput sequencing of Astrammina rara: Sampling the giant genome of a giant foraminiferan protist

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Foraminiferan protists, which are significant players in most marine ecosystems, are also genetic innovators, harboring unique modifications to proteins that make up the basic eukaryotic cell machinery. Despite their ecological and evolutionary importance, foraminiferan genomes are poorly understood due to the extreme sequence divergence of many genes and the difficulty of obtaining pure samples: exogenous DNA from ingested food or ecto/endo symbionts often vastly exceed the amount of "native" DNA, and foraminiferans cannot be cultured axenically. Few foraminiferal genes have been sequenced from genomic material, although partial sequences of coding regions have been determined by EST studies and mass spectroscopy. The lack of genomic data has impeded evolutionary and cell-biology studies and has also hindered our ability to test ecological hypotheses using genetic tools.</p> <p>Results</p> <p>454 sequence analysis was performed on a library derived from whole genome amplification of microdissected nuclei of the Antarctic foraminiferan <it>Astrammina rara</it>. Xenogenomic sequence, which was shown not to be of eukaryotic origin, represented only 12% of the sample. The first foraminiferal examples of important classes of genes, such as tRNA genes, are reported, and we present evidence that sequences of mitochondrial origin have been translocated to the nucleus. The recovery of a 3' UTR and downstream sequence from an actin gene suggests that foraminiferal mRNA processing may have some unusual features. Finally, the presence of a co-purified bacterial genome in the library also permitted the first calculation of the size of a foraminiferal genome by molecular methods, and statistical analysis of sequence from different genomic sources indicates that low-complexity tracts of the genome may be endoreplicated in some stages of the foraminiferal life cycle.</p> <p>Conclusions</p> <p>These data provide the first window into genomic organization and genetic control in these organisms, and also complement and expands upon information about foraminiferal genes based on EST projects. The genomic data obtained are informative for environmental and cell-biological studies, and will also be useful for efforts to understand relationships between foraminiferans and other protists.</p

    Domain architecture evolution of pattern-recognition receptors

    Get PDF
    In animals, the innate immune system is the first line of defense against invading microorganisms, and the pattern-recognition receptors (PRRs) are the key components of this system, detecting microbial invasion and initiating innate immune defenses. Two families of PRRs, the intracellular NOD-like receptors (NLRs) and the transmembrane Toll-like receptors (TLRs), are of particular interest because of their roles in a number of diseases. Understanding the evolutionary history of these families and their pattern of evolutionary changes may lead to new insights into the functioning of this critical system. We found that the evolution of both NLR and TLR families included massive species-specific expansions and domain shuffling in various lineages, which resulted in the same domain architectures evolving independently within different lineages in a process that fits the definition of parallel evolution. This observation illustrates both the dynamics of the innate immune system and the effects of “combinatorially constrained” evolution, where existence of the limited numbers of functionally relevant domains constrains the choices of domain architectures for new members in the family, resulting in the emergence of independently evolved proteins with identical domain architectures, often mistaken for orthologs

    Elevated Stress-Hemoconcentration in Major Depression Is Normalized by Antidepressant Treatment: Secondary Analysis from a Randomized, Double-Blind Clinical Trial and Relevance to Cardiovascular Disease Risk

    Get PDF
    Major depressive disorder (MDD) is an independent risk factor for cardiovascular disease (CVD); the presence of MDD symptoms in patients with CVD is associated with a higher incidence of cardiac complications following acute myocardial infarction (MI). Stress-hemoconcentration, a result of psychological stress that might be a risk factor for the pathogenesis of CVD, has been studied in stress-challenge paradigms but has not been systematically studied in MDD.Secondary analysis of stress hemoconcentration was performed on data from controls and subjects with mild to moderate MDD participating in an ongoing pharmacogenetic study of antidepressant treatment response to desipramine or fluoxetine. Hematologic and hemorheologic measures of stress-hemoconcentration included blood cell counts, hematocrit, hemoglobin, total serum protein, and albumin, and whole blood viscosity.Subjects with mild to moderate MDD had significantly increased hemorheologic measures of stress-hemoconcentration and blood viscosity when compared to controls; these measures were correlated with depression severity. Measures of stress-hemoconcentration improved significantly after 8 weeks of antidepressant treatment. Improvements in white blood cell count, red blood cell measures and plasma volume were correlated with decreased severity of depression.Our secondary data analyses support that stress-hemoconcentration, possibly caused by decrements in plasma volume during psychological stress, is present in Mexican-American subjects with mild to moderate MDD at non-challenged baseline conditions. We also found that after antidepressant treatment hemorheologic measures of stress-hemoconcentration are improved and are correlated with improvement of depressive symptoms. These findings suggest that antidepressant treatment may have a positive impact in CVD by ameliorating increased blood viscosity. Physicians should be aware of the potential impact of measures of hemoconcentration and consider the implications for cardiovascular risk in depressed patients
    corecore