1,963 research outputs found
Recommended from our members
Outdoor allergens.
Outdoor allergens are an important part of the exposures that lead to allergic disease. Understanding the role of outdoor allergens requires a knowledge of the nature of outdoor allergen-bearing particles, the distributions of their source, and the nature of the aerosols (particle types, sizes, dynamics of concentrations). Primary sources for outdoor allergens include vascular plants (pollen, fern spores, soy dust), and fungi (spores, hyphae). Nonvascular plants, algae, and arthropods contribute small numbers of allergen-bearing particles. Particles are released from sources into the air by wind, rain, mechanical disturbance, or active discharge mechanisms. Once airborne, they follow the physical laws that apply to all airborne particles. Although some outdoor allergens penetrate indoor spaces, exposure occurs mostly outdoors. Even short-term peak outdoor exposures can be important in eliciting acute symptoms. Monitoring of airborne biological particles is usually by particle impaction and microscopic examination. Centrally located monitoring stations give regional-scale measurements for aeroallergen levels. Evidence for the role of outdoor allergens in allergic rhinitis is strong and is rapidly increasing for a role in asthma. Pollen and fungal spore exposures have both been implicated in acute exacerbations of asthma, and sensitivity to some fungal spores predicts the existence of asthma. Synergism and/or antagonism probably occurs with other outdoor air particles and gases. Control involves avoidance of exposure (staying indoors, preventing entry of outdoor aerosols) as well as immunotherapy, which is effective for pollen but of limited effect for spores. Outdoor allergens have been the subject of only limited studies with respect to the epidemiology of asthma. Much remains to be studied with respect to prevalence patterns, exposure and disease relationships, and control
Space shuttle high pressure auxiliary propulsion system
Requirements review for space shuttle auxiliary propulsion syste
Relevance of pseudospin symmetry in proton-nucleus scattering
The manifestation of pseudospin-symmetry in proton-nucleus scattering is
discussed. Constraints on the pseudospin-symmetry violating scattering
amplitude are given which require as input cross section and polarization data,
but no measurements of the spin rotation function. Application of these
constraints to p-58Ni and p-208Pb scattering data in the laboratory energy
range of 200 MeV to 800 MeV, reveals a significant violation of the symmetry at
lower energies and a weak one at higher energies. Using a schematic model
within the Dirac phenomenology, the role of the Coulomb potential in
proton-nucleus scattering with regard to pseudospin symmetry is studied. Our
results indicate that the existence of pseudospin-symmetry in proton-nucleus
scattering is questionable in the whole energy region considered and that the
violation of this symmetry stems from the long range nature of the Coulomb
interaction.Comment: 22 pages including 9 figures, correction of 1 reference, revision of
abstract and major modification of chapter 4, Fig. 6, and Fig. 7; addition of
Fig. 8 and Fig.
Recommended from our members
Populations and determinants of airborne fungi in large office buildings
Bioaerosol concentrations in office environments and their roles in causing building-related symptoms have drawn much attention in recent years. Most bioaerosol studies have been cross-sectional. We conducted a longitudinal study to examine the characteristics of airborne fungal populations and correlations with other environmental parameters in office environments. We investigated four office buildings in Boston, Massachusetts, during 1 year beginning May 1997, recruiting 21 offices with open workstations. We conducted intensive bioaerosol sampling every 6 weeks resulting in 10 sets of measurement events at each workstation, and recorded relative humidity, temperature, and CO2 concentrations continuously. We used principal component analysis (PCA) to identify groups of culturable fungal taxa that covaried in air. Four major groupings (PCA factors) were derived where the fungal taxa in the same groupings shared similar ecological requirements. Total airborne fungal concentrations varied significantly by season (highest in summer, lowest in winter) and were positively correlated with relative humidity and negatively related to CO2 concentrations. The first and second PCA factors had similar correlations with environmental variables compared with total fungi. The results of this study provide essential information on the variability within airborne fungal populations in office environments over time. These data also provide background against which cross-sectional data can be compared to facilitate interpretation. More studies are needed to correlate airborne fungi and occupants' health, controlling for seasonal effects and other important environmental factors
A generalization of the q-Saalschutz sum and the Burge transform
A generalization of the q-(Pfaff)-Saalschutz summation formula is proved.
This implies a generalization of the Burge transform, resulting in an
additional dimension of the ``Burge tree''. Limiting cases of our summation
formula imply the (higher-level) Bailey lemma, provide a new decomposition of
the q-multinomial coefficients, and can be used to prove the Lepowsky and Primc
formula for the A_1^{(1)} string functions.Comment: 18 pages, AMSLaTe
- …