53 research outputs found
Analyticity and criticality results for the eigenvalues of the biharmonic operator
We consider the eigenvalues of the biharmonic operator subject to several
homogeneous boundary conditions (Dirichlet, Neumann, Navier, Steklov). We show
that simple eigenvalues and elementary symmetric functions of multiple
eigenvalues are real analytic, and provide Hadamard-type formulas for the
corresponding shape derivatives. After recalling the known results in shape
optimization, we prove that balls are always critical domains under volume
constraint.Comment: To appear on the proceedings of the conference "Geometric Properties
for Parabolic and Elliptic PDE's - 4th Italian-Japanese Workshop" held in
Palinuro (Italy), May 25-29, 201
Jointly Optimal Channel Pairing and Power Allocation for Multichannel Multihop Relaying
We study the problem of channel pairing and power allocation in a
multichannel multihop relay network to enhance the end-to-end data rate. Both
amplify-and-forward (AF) and decode-and-forward (DF) relaying strategies are
considered. Given fixed power allocation to the channels, we show that channel
pairing over multiple hops can be decomposed into independent pairing problems
at each relay, and a sorted-SNR channel pairing strategy is sum-rate optimal,
where each relay pairs its incoming and outgoing channels by their SNR order.
For the joint optimization of channel pairing and power allocation under both
total and individual power constraints, we show that the problem can be
decoupled into two subproblems solved separately. This separation principle is
established by observing the equivalence between sorting SNRs and sorting
channel gains in the jointly optimal solution. It significantly reduces the
computational complexity in finding the jointly optimal solution. It follows
that the channel pairing problem in joint optimization can be again decomposed
into independent pairing problems at each relay based on sorted channel gains.
The solution for optimizing power allocation for DF relaying is also provided,
as well as an asymptotically optimal solution for AF relaying. Numerical
results are provided to demonstrate substantial performance gain of the jointly
optimal solution over some suboptimal alternatives. It is also observed that
more gain is obtained from optimal channel pairing than optimal power
allocation through judiciously exploiting the variation among multiple
channels. Impact of the variation of channel gain, the number of channels, and
the number of hops on the performance gain is also studied through numerical
examples.Comment: 15 pages. IEEE Transactions on Signal Processin
Steklov-type eigenvalues associated with best Sobolev trace constants: domain perturbation and overdetermined systems
We consider a variant of the classic Steklov eigenvalue problem, which arises
in the study of the best trace constant for functions in Sobolev space. We
prove that the elementary symmetric functions of the eigenvalues depend
real-analytically upon variation of the underlying domain and we compute the
corresponding Hadamard-type formulas for the shape derivatives. We also
consider isovolumetric and isoperimetric domain perturbations and we
characterize the corresponding critical domains in terms of appropriate
overdetermined systems. Finally, we prove that balls are critical domains for
the elementary symmetric functions of the eigenvalues subject to volume or
perimeter constraint
A Survey on the Krein-von Neumann Extension, the corresponding Abstract Buckling Problem, and Weyl-Type Spectral Asymptotics for Perturbed Krein Laplacians in Nonsmooth Domains
In the first (and abstract) part of this survey we prove the unitary
equivalence of the inverse of the Krein--von Neumann extension (on the
orthogonal complement of its kernel) of a densely defined, closed, strictly
positive operator, for some in a Hilbert space to an abstract buckling problem operator.
This establishes the Krein extension as a natural object in elasticity theory
(in analogy to the Friedrichs extension, which found natural applications in
quantum mechanics, elasticity, etc.).
In the second, and principal part of this survey, we study spectral
properties for , the Krein--von Neumann extension of the
perturbed Laplacian (in short, the perturbed Krein Laplacian)
defined on , where is measurable, bounded and
nonnegative, in a bounded open set belonging to a
class of nonsmooth domains which contains all convex domains, along with all
domains of class , .Comment: 68 pages. arXiv admin note: extreme text overlap with arXiv:0907.144
- …