7,488 research outputs found

    Classification of integrable two-component Hamiltonian systems of hydrodynamic type in 2+1 dimensions

    Full text link
    Hamiltonian systems of hydrodynamic type occur in a wide range of applications including fluid dynamics, the Whitham averaging procedure and the theory of Frobenius manifolds. In 1+1 dimensions, the requirement of the integrability of such systems by the generalised hodograph transform implies that integrable Hamiltonians depend on a certain number of arbitrary functions of two variables. On the contrary, in 2+1 dimensions the requirement of the integrability by the method of hydrodynamic reductions, which is a natural analogue of the generalised hodograph transform in higher dimensions, leads to finite-dimensional moduli spaces of integrable Hamiltonians. In this paper we classify integrable two-component Hamiltonian systems of hydrodynamic type for all existing classes of differential-geometric Poisson brackets in 2D, establishing a parametrisation of integrable Hamiltonians via elliptic/hypergeometric functions. Our approach is based on the Godunov-type representation of Hamiltonian systems, and utilises a novel construction of Godunov's systems in terms of generalised hypergeometric functions.Comment: Latex, 34 page

    Gap Probabilities for Edge Intervals in Finite Gaussian and Jacobi Unitary Matrix Ensembles

    Full text link
    The probabilities for gaps in the eigenvalue spectrum of the finite dimension N×N N \times N random matrix Hermite and Jacobi unitary ensembles on some single and disconnected double intervals are found. These are cases where a reflection symmetry exists and the probability factors into two other related probabilities, defined on single intervals. Our investigation uses the system of partial differential equations arising from the Fredholm determinant expression for the gap probability and the differential-recurrence equations satisfied by Hermite and Jacobi orthogonal polynomials. In our study we find second and third order nonlinear ordinary differential equations defining the probabilities in the general NN case. For N=1 and N=2 the probabilities and thus the solution of the equations are given explicitly. An asymptotic expansion for large gap size is obtained from the equation in the Hermite case, and also studied is the scaling at the edge of the Hermite spectrum as N→∞ N \to \infty , and the Jacobi to Hermite limit; these last two studies make correspondence to other cases reported here or known previously. Moreover, the differential equation arising in the Hermite ensemble is solved in terms of an explicit rational function of a {Painlev\'e-V} transcendent and its derivative, and an analogous solution is provided in the two Jacobi cases but this time involving a {Painlev\'e-VI} transcendent.Comment: 32 pages, Latex2

    The molecular polar disc in NGC 2768

    Full text link
    We present CO(1-0) and CO(2-1) maps of the molecular polar disc in the elliptical galaxy NGC 2768 obtained at the IRAM Plateau de Bure Interferometer. The maps have a resolution of 2.6" x 2.3" and 1.2" x 1.2" for the CO(1-0) and CO(2-1) lines, respectively. The CO maps complete the unique picture of the interstellar medium (ISM) of NGC 2768; the dust, molecular gas, ionised gas and neutral hydrogen (HI) trace the recent acquisition of cold and cool gas over two orders of magnitude in radii (and much more in density). In agreement with the other ISM components, the CO distribution extends nearly perpendicularly to the photometric major axis of the galaxy. Velocity maps of the CO show a rotating polar disc or ring in the inner kiloparsec. This cool gas could lead to kinematic substructure formation within NGC 2768. However, the stellar velocity field and H-beta absorption linestrength maps from the optical integral-field spectrograph SAURON give no indication of a young and dynamically cold stellar population coincident with the molecular polar disc. Very recent or weak star formation, undetectable in linestrengths, nevertheless remains a possibility and could be at the origin of some of the ionised gas observed. Millimetre continuum emission was also detected in NGC 2768, now one of only a few low-luminosity active galactic nuclei with observed millimetre continuum emission.Comment: Accepted for publication in MNRAS, 11 pages, 8 figure

    Bar Diagnostics in Edge-On Spiral Galaxies. II. Hydrodynamical Simulations

    Full text link
    We develop diagnostics based on gas kinematics to identify the presence of a bar in an edge-on spiral galaxy and determine its orientation. We use position-velocity diagrams (PVDs) obtained by projecting edge-on two-dimensional hydrodynamical simulations of the gas flow in a barred galaxy potential. We show that when a nuclear spiral is formed, the presence of a gap in the PVDs, between the signature of the nuclear spiral and that of the outer parts of the disk, reliably indicates the presence of a bar. This gap is due to the presence of shocks and inflows in the simulations, leading to a depletion of the gas in the outer bar region. If no nuclear spiral signature is present in a PVD, only indirect arguments can be used to argue for the presence of a bar. The shape of the signature of the nuclear spiral, and to a lesser extent that of the outer bar region, allows to determine the orientation of the bar with respect to the line-of-sight. The presence of dust can also help to discriminate between viewing angles on either side of the bar. Simulations covering a large fraction of parameter space constrain the bar properties and mass distribution of observed galaxies. The strongest constraint comes from the presence or absence of the signature of a nuclear spiral in the PVD.Comment: 25 pages (AASTeX, aaspp4.sty), 11 jpg figures. Accepted for publication in The Astrophysical Journal. Online manuscript with PostScript figures available at: http://www.strw.leidenuniv.nl/~bureau/pub_list.htm

    Bar Diagnostics in Edge-On Spiral Galaxies. I. The Periodic Orbits Approach

    Full text link
    We develop diagnostics to detect the presence and orientation of a bar in an edge-on disk, using its kinematical signature in the position-velocity diagram (PVD) of a spiral galaxy observed edge-on. Using a well-studied barred spiral galaxy mass model, we briefly review the orbital properties of two-dimensional non-axisymmetric disks and identify the main families of periodic orbits. We use those families as building blocks to model real galaxies and calculate the PVDs obtained for various realistic combinations of periodic orbit families and for a number of viewing angles with respect to the bar. We show that the global structure of the PVD is a reliable bar diagnostic in edge-on disks. Specifically, the presence of a gap between the signatures of the families of periodic orbits in the PVD follows directly from the non-homogeneous distribution of the orbits in a barred galaxy. Similarly, material in the two so-called forbidden quadrants of the PVD results from the elongated shape of the orbits. We show how the shape of the signatures of the dominant x1 and x2 families of periodic orbits in the PVD can be used efficiently to determine the viewing angle with respect to the bar and, to a lesser extent, to constrain the mass distribution of an observed galaxy. We also address the limitations of the models when interpreting observational data.Comment: 22 pages, 9 figures (AASTeX, aaspp4.sty). Accepted for publication in The Astrophysical Journa

    A critical-density closed Universe in Brans-Dicke theory

    Full text link
    In a Brans-Dicke (BD) cosmological model, the energy density associated with some scalar field decreases as \displaystyle a^{{-2}(\frac{\omega_{o}+ {\frac12}%}{\omega_{o}+1})} with the scale factor a(t)a(t) of the Universe, giving a matter with an Equation of state p=−1/3(2+ωo1+ωo)ρ\displaystyle p=-{1/3}(\frac{2+\omega_{o}}{1+\omega_{o}}) \rho . In this model, the Universe could be closed but still have a nonrelativistic-matter density corresponding to its critical value, Ωo=1\Omega_{o}=1. Different cosmological expressions, such as, luminosity distance, angular diameter, number count and ratio of the redshift tickness-angular size, are determined in terms of the redshift for this model.Comment: To appear in MNRAS, 7 pages, 5 eps figure

    Coalition theories: empirical evidence for dutch municipalities

    Get PDF
    The paper analyzes coalition formation in Dutch municipalities. After discussing the main features of the institutional setting, several theories are discussed, which are classified as size oriented, policy oriented and actor oriented models. A test statistic is proposed to determine the predictive power of these models. The empirical analysis shows that strategic positions as well as some of the distinguished preferences are important in the setting of Dutch municipalities. Especially, the dominant minimum number principle yields highly significant results for coalition formations in the period 1978–1986

    Boxy/peanut/X bulges, barlenses and the thick part of galactic bars: What are they and how did they form?

    Full text link
    Bars have a complex three-dimensional shape. In particular their inner part is vertically much thicker than the parts further out. Viewed edge-on, the thick part of the bar is what is commonly known as a boxy-, peanut- or X- bulge and viewed face-on it is referred to as a barlens. These components are due to disc and bar instabilities and are composed of disc material. I review here their formation, evolution and dynamics, using simulations, orbital structure theory and comparisons to observations.Comment: 21 pages, 7 figures, invited review to appear in "Galactic Bulges", E. Laurikainen, R. Peletier, D. Gadotti, (eds.), Springe
    • 

    corecore