58 research outputs found

    Leptin Resistance in Vagal Afferent Neurons Inhibits Cholecystokinin Signaling and Satiation in Diet Induced Obese Rats

    Get PDF
    Background and Aims: The gastrointestinal hormone cholecystokinin (CCK) plays an important role in regulating meal size and duration by activating CCK1 receptors on vagal afferent neurons (VAN). Leptin enhances CCK signaling in VAN via an early growth response 1 (EGR1) dependent pathway thereby increasing their sensitivity to CCK. In response to a chronic ingestion of a high fat diet, VAN develop leptin resistance and the satiating effects of CCK are reduced. We tested the hypothesis that leptin resistance in VAN is responsible for reducing CCK signaling and satiation. Results: Lean Zucker rats sensitive to leptin signaling, significantly reduced their food intake following administration of CCK8S (0.22 nmol/kg, i.p.), while obese Zucker rats, insensitive to leptin, did not. CCK signaling in VAN of obese Zucker rats was reduced, preventing CCK-induced up-regulation of Y2 receptor and down-regulation of melanin concentrating hormone 1 receptor (MCH1R) and cannabinoid receptor (CB1). In VAN from diet-induced obese (DIO) Sprague Dawley rats, previously shown to become leptin resistant, we demonstrated that the reduction in EGR1 expression resulted in decreased sensitivity of VAN to CCK and reduced CCK-induced inhibition of food intake. The lowered sensitivity of VAN to CCK in DIO rats resulted in a decrease in Y2 expression and increased CB1 and MCH1R expression. These effects coincided with the onset of hyperphagia in DIO rats. Conclusions: Leptin signaling in VAN is required for appropriate CCK signaling and satiation. In response to high fat feeding

    Deregulation of transcription factors controlling intestinal epithelial cell differentiation; a predisposing factor for reduced enteroendocrine cell number in morbidly obese individuals

    Get PDF
    Morbidly obese patients exhibit impaired secretion of gut hormones that may contribute to the development of obesity. After bariatric surgery there is a dramatic increase in gut hormone release. In this study, gastric and duodenal tissues were endoscopically collected from lean, and morbidly obese subjects before and 3 months after laparoscopic sleeve gastrectomy (LSG). Tissue morphology, abundance of chromogranin A, gut hormones, Ξ±-defensin, mucin 2, Na+/glucose co-transporter 1 (SGLT1) and transcription factors, Hes1, HATH1, NeuroD1, and Ngn3, were determined. In obese patients, the total number of enteroendocrine cells (EEC) and EECs containing gut hormones were significantly reduced in the stomach and duodenum, compared to lean, and returned to normality post-LSG. No changes in villus height/crypt depth were observed. A significant increase in mucin 2 and SGLT1 expression was detected in the obese duodenum. Expression levels of transcription factors required for differentiation of absorptive and secretory cell lineages were altered. We propose that in obesity, there is deregulation in differentiation of intestinal epithelial cell lineages that may influence the levels of released gut hormones. Post-LSG cellular differentiation profile is restored. An understanding of molecular mechanisms controlling epithelial cell differentiation in the obese intestine assists in the development of non-invasive therapeutic strategies

    A Computational Model of the Ionic Currents, Ca2+ Dynamics and Action Potentials Underlying Contraction of Isolated Uterine Smooth Muscle

    Get PDF
    Uterine contractions during labor are discretely regulated by rhythmic action potentials (AP) of varying duration and form that serve to determine calcium-dependent force production. We have employed a computational biology approach to develop a fuller understanding of the complexity of excitation-contraction (E-C) coupling of uterine smooth muscle cells (USMC). Our overall aim is to establish a mathematical platform of sufficient biophysical detail to quantitatively describe known uterine E-C coupling parameters and thereby inform future empirical investigations of physiological and pathophysiological mechanisms governing normal and dysfunctional labors. From published and unpublished data we construct mathematical models for fourteen ionic currents of USMCs: currents (L- and T-type), current, an hyperpolarization-activated current, three voltage-gated currents, two -activated current, -activated current, non-specific cation current, - exchanger, - pump and background current. The magnitudes and kinetics of each current system in a spindle shaped single cell with a specified surface area∢volume ratio is described by differential equations, in terms of maximal conductances, electrochemical gradient, voltage-dependent activation/inactivation gating variables and temporal changes in intracellular computed from known fluxes. These quantifications are validated by the reconstruction of the individual experimental ionic currents obtained under voltage-clamp. Phasic contraction is modeled in relation to the time constant of changing . This integrated model is validated by its reconstruction of the different USMC AP configurations (spikes, plateau and bursts of spikes), the change from bursting to plateau type AP produced by estradiol and of simultaneous experimental recordings of spontaneous AP, and phasic force. In summary, our advanced mathematical model provides a powerful tool to investigate the physiological ionic mechanisms underlying the genesis of uterine electrical E-C coupling of labor and parturition. This will furnish the evolution of descriptive and predictive quantitative models of myometrial electrogenesis at the whole cell and tissue levels

    Calcium mobilization via intracellular ion channels, store organization and mitochondria in smooth muscle

    Get PDF
    In smooth muscle, Ca2+ release from the internal store into the cytoplasm occurs via inositol trisphosphate (IP3R) and ryanodine receptors (RyR). The internal Ca2+ stores containing IP3R and RyR may be arranged as multiple separate compartments with various IP3R and RyR arrangements, or there may be a single structure containing both receptors. The existence of multiple stores is proposed to explain several physiological responses which include the progression of Ca2+ waves, graded Ca2+ release from the store and various local responses and sensitivities. We suggest that, rather than multiple stores, a single luminally-continuous store exists in which Ca2+ is in free diffusional equilibrium throughout. Regulation of Ca2+ release via IP3R and RyR by the local Ca2+ concentration within the stores explains the apparent existence of multiple stores and physiological processes such as graded Ca2+ release and Ca2+ waves. Close positioning of IP3R on the store with mitochondria or with receptors on the plasma membrane creates β€˜IP3 junctions’ to generate local responses on the luminally-continuous store

    Expression of cannabinoid CB1 receptors by vagal afferent neurons: kinetics and role in influencing neurochemical phenotype

    No full text
    The intestinal hormone cholecystokinin (CCK) inhibits food intake via stimulation of vagal afferent neurons (VAN). Recent studies suggest that CCK also regulates the expression of some G protein-coupled receptors and neuropeptide transmitters in these neurons. The aim of the present study was to characterize the expression of cannabinoid (CB)1 receptors in VAN and to determine whether stimulation of these receptors plays a role in regulating neurochemical phenotype. Expression of CB1 in rat VAN was detectable by in situ hybridization or immunohistochemistry after 6 h of fasting and increased to a maximum after 24 h when ∼50% of neurons in the mid and caudal regions expressed the receptor. Melanin-concentrating hormone (MCH)1 receptors also increased with fasting, but the changes were delayed compared with CB1; in contrast Y2 receptors (Y2R) exhibited reciprocal changes in expression to CB1. Administration of CCK8s (10 nmol ip) to fasted rats decreased expression of CB1 with a t1/2 of ∼1 h compared with 3 h for MCH1. The action of CCK8s was inhibited by ghrelin and orexin-A. The CB1 agonist anandamide (intraperitoneally) reversed the effect of CCK8s on CB1, MCH1, and Y2 receptor expression. In contrast, in rats fasted for 18 h, administration of a CB1 antagonist/inverse agonist (AM281 ip) downregulated CB1 expression and increased Y2 receptor expression. Activation of vagal CB1 receptors therefore influences the neurochemical phenotype of these neurons, indicating a new and hitherto unrecognized role for endocannabinoids in gut-brain signaling
    • …
    corecore