201 research outputs found
A community view of smoking cessation counseling in the practices of physicians and dentists.
The practice norms of community physicians and dentists in the Lehigh Valley of Pennsylvania for counseling about smoking cessation were surveyed. In addition, 1,373 residents in the valley were interviewed by telephone about the smoking counseling behaviors of their dentists and physicians. These activities were conducted as part of the planning for an intervention by the Coalition for a Smoke-Free Valley, a coalition of 100 persons and organizations in the area. The survey response rate for 172 physicians was 77 percent, and for 103 dentists, it was 76 percent. More physicians than dentists advised patients to quit, counseled patients, provided materials, and helped the patient to set a quit date. However, there was a clear discrepancy between what physicians say they do and what smokers say they hear
Forage Systems to Optimize Agronomic and Economic Performance in Organic Dairy Systems
Organic dairy production in the USA is growing, but most forage systems research focuses on conventional production practices. As a result, organic dairy producers have limited science-based information to assist with farm and livestock management. The objective of this project was to use a multi-faceted approach to determine the ideal species mixtures for organic dairy production as well as document forage quality, forage yield, soil characteristics, milk production and milk quality during the grazing season. The forages studied ranged from a single species monoculture to a four species mixture of warm and cool season grasses and legumes. Nine distinct forage systems were seeded into small plots at the University of Tennessee and University of Kentucky research farms using organic practices. These plots were monitored for three years for yield, quality, species composition, and soil characteristics. The four best performing forage systems were planted in small paddocks on organic dairy farms in Tennessee and Kentucky to evaluate forage yield, forage quality, seasonality of production, and suitability for on-farm milk production. The superior forage system was established on a 4 ha paddock and compared the existing forage system used by each of the dairy farms. These larger paddocks allowed continued measurements of forage yield and quality, as well as measurements of milk production, milk quality, and grazing behaviour of the animals. The information from this project is currently being incorporated into a total farm management system for organic dairy producers in the Southeastern USA
Role of the Gut Endoderm in Relaying Left-Right Patterning in Mice
Analysis of Sox17 mutant mice reveals that gap junction coupling across the gut endoderm of the embryo transmits the left-right asymmetric signal from the node to the site of asymmetric organogenesis in mice
Sc65-Null Mice Provide Evidence for a Novel Endoplasmic Reticulum Complex Regulating Collagen Lysyl Hydroxylation
Collagen is a major component of the extracellular matrix and its integrity is essential for connective tissue and organ function. The importance of proteins involved in intracellular collagen post-translational modification, folding and transport was recently highlighted from studies on recessive forms of osteogenesis imperfecta (OI). Here we describe the critical role of SC65 (Synaptonemal Complex 65, P3H4), a leprecan-family member, as part of an endoplasmic reticulum (ER) complex with prolyl 3-hydroxylase 3. This complex affects the activity of lysyl-hydroxylase 1 potentially through interactions with the enzyme and/or cyclophilin B. Loss of Sc65 in the mouse results in instability of this complex, altered collagen lysine hydroxylation and cross-linking leading to connective tissue defects that include low bone mass and skin fragility. This is the first indication of a prolyl-hydroxylase complex in the ER controlling lysyl-hydroxylase activity during collagen synthesis
The sixth international RASopathies symposium: Precision medicine—From promise to practice
The RASopathies are a group of genetic disorders that result from germline pathogenic variants affecting RAS‐mitogen activated protein kinase (MAPK) pathway genes. RASopathies share RAS/MAPK pathway dysregulation and share phenotypic manifestations affecting numerous organ systems, causing lifelong and at times life‐limiting medical complications. RASopathies may benefit from precision medicine approaches. For this reason, the Sixth International RASopathies Symposium focused on exploring precision medicine. This meeting brought together basic science researchers, clinicians, clinician scientists, patient advocates, and representatives from pharmaceutical companies and the National Institutes of Health. Novel RASopathy genes, variants, and animal models were discussed in the context of medication trials and drug development. Attempts to define and measure meaningful endpoints for treatment trials were discussed, as was drug availability to patients after trial completion
Fox-1 family of RNA-binding proteins
The Fox-1 family of RNA-binding proteins are evolutionarily conserved regulators of tissue-specific alternative splicing in metazoans. The Fox-1 family specifically recognizes the (U)GCAUG stretch in regulated exons or in flanking introns, and either promotes or represses target exons. Recent unbiased bioinformatics analyses of alternatively spliced exons and comparison of various vertebrate genomes identified the (U)GCAUG stretch as a highly conserved and widely distributed element enriched in intronic regions surrounding exons with altered inclusion in muscle, heart, and brain, consistent with specific expression of Fox-1 and Fox-2 in these tissues. Global identification of Fox-2 target RNAs in living cells revealed that many of the Fox-2 target genes themselves encode splicing regulators. Further systematic elucidation of target genes of the Fox-1 family and other splicing regulators in various tissues will lead to a comprehensive understanding of splicing regulatory networks
A Wnt-Frz/Ror-Dsh Pathway Regulates Neurite Outgrowth in Caenorhabditis elegans
One of the challenges to understand the organization of the nervous system has been to determine how axon guidance molecules govern axon outgrowth. Through an unbiased genetic screen, we identified a conserved Wnt pathway which is crucial for anterior-posterior (A/P) outgrowth of neurites from RME head motor neurons in Caenorhabditis elegans. The pathway is composed of the Wnt ligand CWN-2, the Frizzled receptors CFZ-2 and MIG-1, the co-receptor CAM-1/Ror, and the downstream component Dishevelled/DSH-1. Among these, CWN-2 acts as a local attractive cue for neurite outgrowth, and its activity can be partially substituted with other Wnts, suggesting that spatial distribution plays a role in the functional specificity of Wnts. As a co-receptor, CAM-1 functions cell-autonomously in neurons and, together with CFZ-2 and MIG-1, transmits the Wnt signal to downstream effectors. Yeast two-hybrid screening identified DSH-1 as a binding partner for CAM-1, indicating that CAM-1 could facilitate CWN-2/Wnt signaling by its physical association with DSH-1. Our study reveals an important role of a Wnt-Frz/Ror-Dsh pathway in regulating neurite A/P outgrowth
Health and Oral Health Care Needs and Health Care-Seeking Behavior Among Homeless Injection Drug Users in San Francisco
Few existing studies have examined health and oral health needs and treatment-seeking behavior among the homeless and injection drug users (IDUs). This paper describes the prevalence and correlates of health and oral health care needs and treatment-seeking behaviors in homeless IDUs recruited in San Francisco, California, from 2003 to 2005 (N = 340). We examined sociodemographic characteristics, drug use patterns, HIV status via oral fluid testing, physical health using the Short Form 12 Physical Component Score, self-reported needs for physical and oral health care, and the self-reported frequency of seeking medical and oral health care. The sample had a lower health status as compared to the general population and reported a frequent need for physical and oral health care. In bivariate analysis, being in methadone treatment was associated with care-seeking behavior. In addition, being enrolled in Medi-Cal, California’s state Medicaid program, was associated with greater odds of seeking physical and oral health care. Methamphetamine use was not associated with higher odds of needing oral health care as compared to people who reported using other illicit drugs. Homeless IDUs in San Francisco have a large burden of unmet health and oral health needs. Recent cuts in Medi-Cal’s adult dental coverage may result in a greater burden of oral health care which will need to be provided by emergency departments and neighborhood dental clinics
Nodal-Dependent Mesendoderm Specification Requires the Combinatorial Activities of FoxH1 and Eomesodermin
Vertebrate mesendoderm specification requires the Nodal signaling pathway and its transcriptional effector FoxH1. However, loss of FoxH1 in several species does not reliably cause the full range of loss-of-Nodal phenotypes, indicating that Nodal signals through additional transcription factors during early development. We investigated the FoxH1-dependent and -independent roles of Nodal signaling during mesendoderm patterning using a novel recessive zebrafish FoxH1 mutation called midway, which produces a C-terminally truncated FoxH1 protein lacking the Smad-interaction domain but retaining DNA–binding capability. Using a combination of gel shift assays, Nodal overexpression experiments, and genetic epistasis analyses, we demonstrate that midway more accurately represents a complete loss of FoxH1-dependent Nodal signaling than the existing zebrafish FoxH1 mutant schmalspur. Maternal-zygotic midway mutants lack notochords, in agreement with FoxH1 loss in other organisms, but retain near wild-type expression of markers of endoderm and various nonaxial mesoderm fates, including paraxial and intermediate mesoderm and blood precursors. We found that the activity of the T-box transcription factor Eomesodermin accounts for specification of these tissues in midway embryos. Inhibition of Eomesodermin in midway mutants severely reduces the specification of these tissues and effectively phenocopies the defects seen upon complete loss of Nodal signaling. Our results indicate that the specific combinations of transcription factors available for signal transduction play critical and separable roles in determining Nodal pathway output during mesendoderm patterning. Our findings also offer novel insights into the co-evolution of the Nodal signaling pathway, the notochord specification program, and the chordate branch of the deuterostome family of animals
- …