2,023 research outputs found
Solution of the Dyson--Schwinger equation on de Sitter background in IR limit
We propose an ansatz which solves the Dyson-Schwinger equation for the real
scalar fields in Poincare patch of de Sitter space in the IR limit. The
Dyson-Schwinger equation for this ansatz reduces to the kinetic equation, if
one considers scalar fields from the principal series. Solving the latter
equation we show that under the adiabatic switching on and then off the
coupling constant the Bunch-Davies vacuum relaxes in the future infinity to the
state with the flat Gibbons-Hawking density of out-Jost harmonics on top of the
corresponding de Sitter invariant out-vacuum.Comment: 20 pages, including 4 pages of Appendix. Acknowledgements correcte
Balls-in-boxes condensation on networks
We discuss two different regimes of condensate formation in zero-range
processes on networks: on a q-regular network, where the condensate is formed
as a result of a spontaneous symmetry breaking, and on an irregular network,
where the symmetry of the partition function is explicitly broken. In the
latter case we consider a minimal irregularity of the q-regular network
introduced by a single Q-node with degree Q>q. The statics and dynamics of the
condensation depends on the parameter log(Q/q), which controls the exponential
fall-off of the distribution of particles on regular nodes and the typical time
scale for melting of the condensate on the Q-node which increases exponentially
with the system size . This behavior is different than that on a q-regular
network where log(Q/q)=0 and where the condensation results from the
spontaneous symmetry breaking of the partition function, which is invariant
under a permutation of particle occupation numbers on the q-nodes of the
network. In this case the typical time scale for condensate melting is known to
increase typically as a power of the system size.Comment: 7 pages, 3 figures, submitted to the "Chaos" focus issue on
"Optimization in Networks" (scheduled to appear as Volume 17, No. 2, 2007
Free zero-range processes on networks
A free zero-range process (FRZP) is a simple stochastic process describing
the dynamics of a gas of particles hopping between neighboring nodes of a
network. We discuss three different cases of increasing complexity: (a) FZRP on
a rigid geometry where the network is fixed during the process, (b) FZRP on a
random graph chosen from a given ensemble of networks, (c) FZRP on a dynamical
network whose topology continuously changes during the process in a way which
depends on the current distribution of particles. The case (a) provides a very
simple realization of the phenomenon of condensation which manifests as the
appearance of a condensate of particles on the node with maximal degree. The
case (b) is very interesting since the averaging over typical ensembles of
graphs acts as a kind of homogenization of the system which makes all nodes
identical from the point of view of the FZRP. In the case (c), the distribution
of particles and the dynamics of network are coupled to each other. The
strength of this coupling depends on the ratio of two time scales: for changes
of the topology and of the FZRP. We will discuss a specific example of that
type of interaction and show that it leads to an interesting phase diagram.Comment: 11 pages, 4 figures, to appear in Proceedings of SPIE Symposium
"Fluctuations and Noise 2007", Florence, 20-24 May 200
A program generating homogeneous random graphs with given weights
We present a program package which generates homogeneous random graphs with
probabilities prescribed by the user. The statistical weight of a labeled graph
is given in the form , where is
an arbitrary user function and are the degrees of the graph nodes. The
program can be used to generate two types of graphs (simple graphs and
pseudo-graphs) from three types of ensembles (micro-canonical, canonical and
grand-canonical).Comment: 19 pages, 3 figure
Quantum widening of CDT universe
The physical phase of Causal Dynamical Triangulations (CDT) is known to be
described by an effective, one-dimensional action in which three-volumes of the
underlying foliation of the full CDT play a role of the sole degrees of
freedom. Here we map this effective description onto a statistical-physics
model of particles distributed on 1d lattice, with site occupation numbers
corresponding to the three-volumes. We identify the emergence of the quantum
de-Sitter universe observed in CDT with the condensation transition known from
similar statistical models. Our model correctly reproduces the shape of the
quantum universe and allows us to analytically determine quantum corrections to
the size of the universe. We also investigate the phase structure of the model
and show that it reproduces all three phases observed in computer simulations
of CDT. In addition, we predict that two other phases may exists, depending on
the exact form of the discretised effective action and boundary conditions. We
calculate various quantities such as the distribution of three-volumes in our
model and discuss how they can be compared with CDT.Comment: 19 pages, 13 figure
Random matrix model for QCD_3 staggered fermions
We show that the lowest part of the eigenvalue density of the staggered
fermion operator in lattice QCD_3 at small lattice coupling constant beta has
exactly the same shape as in QCD_4. This observation is quite surprising, since
universal properties of the QCD_3 Dirac operator are expected to be described
by a non-chiral matrix model. We show that this effect is related to the
specific nature of the staggered fermion discretization and that the eigenvalue
density evolves towards the non-chiral random matrix prediction when beta is
increased and the continuum limit is approached. We propose a two-matrix model
with one free parameter which interpolates between the two limits and very well
mimics the pattern of evolution with beta of the eigenvalue density of the
staggered fermion operator in QCD_3.Comment: 8 pages 4 figure
Asymmetric correlation matrices: an analysis of financial data
We analyze the spectral properties of correlation matrices between distinct
statistical systems. Such matrices are intrinsically non symmetric, and lend
themselves to extend the spectral analyses usually performed on standard
Pearson correlation matrices to the realm of complex eigenvalues. We employ
some recent random matrix theory results on the average eigenvalue density of
this type of matrices to distinguish between noise and non trivial correlation
structures, and we focus on financial data as a case study. Namely, we employ
daily prices of stocks belonging to the American and British stock exchanges,
and look for the emergence of correlations between two such markets in the
eigenvalue spectrum of their non symmetric correlation matrix. We find several
non trivial results, also when considering time-lagged correlations over short
lags, and we corroborate our findings by additionally studying the asymmetric
correlation matrix of the principal components of our datasets.Comment: Revised version; 11 pages, 13 figure
Spectrum of the Product of Independent Random Gaussian Matrices
We show that the eigenvalue density of a product X=X_1 X_2 ... X_M of M
independent NxN Gaussian random matrices in the large-N limit is rotationally
symmetric in the complex plane and is given by a simple expression
rho(z,\bar{z}) = 1/(M\pi\sigma^2} |z|^{-2+2/M} for |z|<\sigma, and is zero for
|z|> \sigma. The parameter \sigma corresponds to the radius of the circular
support and is related to the amplitude of the Gaussian fluctuations. This form
of the eigenvalue density is highly universal. It is identical for products of
Gaussian Hermitian, non-Hermitian, real or complex random matrices. It does not
change even if the matrices in the product are taken from different Gaussian
ensembles. We present a self-contained derivation of this result using a planar
diagrammatic technique for Gaussian matrices. We also give a numerical evidence
suggesting that this result applies also to matrices whose elements are
independent, centered random variables with a finite variance.Comment: 16 pages, 6 figures, minor changes, some references adde
- …
