14 research outputs found

    Simulation Training to Improve Informed Consent and Pharmacokinetic/Pharmacodynamic Sampling in Pediatric Trials

    Get PDF
    Background: Pediatric trials to add missing data for evidence-based pharmacotherapy are still scarce. A tailored training concept appears to be a promising tool to cope with critical and complex situations before enrolling the very first patient and subsequently to ensure high-quality study conduct. The aim was to facilitate study success by optimizing the preparedness of the study staff shift. Method: An interdisciplinary faculty developed a simulation training focusing on the communication within the informed consent procedure and the conduct of the complex pharmacokinetic/pharmacodynamic (PK/PD) sampling within a simulation facility. Scenarios were video-debriefed by an audio-video system and manikins with artificial blood simulating patients were used. The training was evaluated by participants' self-assessment before and during trial recruitment. Results: The simulation training identified different optimization potentials for improved informed consent process and study conduct. It facilitated the reduction of avoidable errors, especially in the early phase of a clinical study. The knowledge gained through the intervention was used to train the study teams, improve the team composition and optimize the on-ward setting for the FP-7 funded “LENA” project (grant agreement no. 602295). Self-perceived ability to communicate core elements of the trial as well as its correct performance of sample preparation increased significantly (mean, 95% CI, p ≤ 0.0001) from 3 (2.5–3.5) to four points (4.0–4.5), and from 2 (1.5–2.5) to five points (4.0–5.0). Conclusion: An innovative training concept to optimize the informed consent process and study conduct was successfully developed and enabled high-quality conduct of the pediatric trials as of the very first patient visit

    Sample Preparation and Extraction in Small Sample Volumes Suitable for Pediatric Clinical Studies: Challenges, Advances, and Experiences of a Bioanalytical HPLC-MS/MS Method Validation Using Enalapril and Enalaprilat

    Get PDF
    In USA and Europe, medicines agencies force the development of child-appropriate medications and intend to increase the availability of information on the pediatric use. This asks for bioanalytical methods which are able to deal with small sample volumes as the trial-related blood lost is very restricted in children. Broadly used HPLC-MS/MS, being able to cope with small volumes, is susceptible to matrix effects. The latter restrains the precise drug quantification through, for example, causing signal suppression. Sophisticated sample preparation and purification utilizing solid-phase extraction was applied to reduce and control matrix effects. A scale-up from vacuum manifold to positive pressure manifold was conducted to meet the demands of high-throughput within a clinical setting. Faced challenges, advances, and experiences in solid-phase extraction are exemplarily presented on the basis of the bioanalytical method development and validation of low-volume samples (50 μL serum). Enalapril, enalaprilat, and benazepril served as sample drugs. The applied sample preparation and extraction successfully reduced the absolute and relative matrix effect to comply with international guidelines. Recoveries ranged from 77 to 104% for enalapril and from 93 to 118% for enalaprilat. The bioanalytical method comprising sample extraction by solid-phase extraction was fully validated according to FDA and EMA bioanalytical guidelines and was used in a Phase I study in 24 volunteers

    Sensitive mass spectrometric determination of kinin-kallikrein system peptides in light of COVID-19

    No full text
    Abstract The outbreak of COVID-19 has raised interest in the kinin–kallikrein system. Viral blockade of the angiotensin-converting enzyme 2 impedes degradation of the active kinin des-Arg(9)-bradykinin, which thus increasingly activates bradykinin receptors known to promote inflammation, cough, and edema—symptoms that are commonly observed in COVID-19. However, lean and reliable investigation of the postulated alterations is currently hindered by non-specific peptide adsorption, lacking sensitivity, and cross-reactivity of applicable assays. Here, an LC–MS/MS method was established to determine the following kinins in respiratory lavage fluids: kallidin, bradykinin, des-Arg(10)-kallidin, des-Arg(9)-bradykinin, bradykinin 1-7, bradykinin 2-9 and bradykinin 1-5. This method was fully validated according to regulatory bioanalytical guidelines of the European Medicine Agency and the US Food and Drug Administration and has a broad calibration curve range (up to a factor of 103), encompassing low quantification limits of 4.4–22.8 pg/mL (depending on the individual kinin). The application of the developed LC–MS/MS method to nasal lavage fluid allowed for the rapid (~ 2 h), comprehensive and low-volume (100 µL) determination of kinins. Hence, this novel assay may support current efforts to investigate the pathophysiology of COVID-19, but can also be extended to other diseases

    Embedding a Sensitive Liquid-Core Waveguide UV Detector into an HPLC-UV System for Simultaneous Quantification of Differently Dosed Active Ingredients during Drug Release

    No full text
    Individual dosing of pharmaceutics and personalized medicine have become important with regard to therapeutic safety. Dose adjustments, biorelevant drug release and combination of multiple active substances in one dosage form for the reduction in polymedication are essential aspects that increase the safety and acceptance of the patient’s pharmacotherapy. Therefore, not only innovative drug products but also new analytical methods are needed during the drug development phase and for quality control that can simultaneously determine different active ingredients and cover wide concentration ranges. We investigated a liquid-core waveguide UV absorbance flow cell detector coupled to an existing HPLC-UV system. A Teflon AF 2400 capillary tubing of 20 cm length was connected in series to the HPLC flow line and enabled a lower limit of quantification of 1 ng/mL pramipexole (increase in sensitivity by 20 compared to common 0.9 cm flow cells). This allowed the low-concentration of pramipexole and the higher concentrations of levodopa and benserazide occurring during drug release to be determined in a single chromatographic run within 22.5 min

    Development and evaluation of a composite dosage form containing desmopressin acetate for buccal administration

    No full text
    Desmopressin acetate (DDAVP) is an oligopeptide indicated for the treatment of primary nocturnal enuresis, for example. The poor oral bioavailability of DDAVP accelerated a shift to alternative routes of administration like nasal and oromucosal, whereby nasal administration results in high fluctuations increasing the risk of undesirable side effects. Aim of the study was to use a new composite dosage form (solid matrix attached to a bilayer mucoadhesive film) to make DDAVP available via oromucosal route, reducing the risk of undesirable side effects through precise dosing. DDAVP was incorporated into a solid matrix in the form of a minitablet, and both direct tableting (AV > 30) and granulation followed by tableting (AV = 17.86) were compared. Minitablets with content uniformity could only be obtained by granulation and loss supplementation (AV = 11.27) with immediate drug release (>80% after 7–8 min) and rapid disintegration (<49 s). Permeation studies were performed with a clinically relevant dose (200 μg) in a time interval of up to one hour, resulting in apparent permeation coefficients of 4.90 × 10−6 cm/s (minitablet) and 2.04 × 10−6 cm/s (composite). Comparable fluctuations showed no inferiority of composite and minitablet regarding dosing accuracy. Thus, a step towards controlled and dose-accurate transmucosal delivery of systemically active DDAVP could be achieved

    Enalapril and Enalaprilat Pharmacokinetics in Children with Heart Failure Due to Dilated Cardiomyopathy and Congestive Heart Failure after Administration of an Orodispersible Enalapril Minitablet (LENA-Studies)

    Get PDF
    Angiotensin-converting enzyme inhibitors (ACEI), such as enalapril, are a cornerstone of treatment for pediatric heart failure which is still used off-label. Using a novel age-appropriate formulation of enalapril orodispersible minitablets (ODMTs), phase II/III open-label, multicenter pharmacokinetic (PK) bridging studies were performed in pediatric patients with heart failure due to dilated cardiomyopathy (DCM) and congenital heart disease (CHD) in five participating European countries. Children were treated for 8 weeks with ODMTs according to an age-appropriate dosing schedule. The primary objective was to describe PK parameters (area under the curve (AUC), maximal concentration (Cmax), time to reach maximal concentration (t-max)) of enalapril and its active metabolite enalaprilat. Of 102 patients, 89 patients (n = 26, DCM; n = 63 CHD) were included in the primary PK endpoint analysis. Rate and extent of enalapril and its active metabolite enalaprilat were described and etiology and age could be identified as potential PK modifying factors. The dosing schedule appeared to be tolerated well and did not result in any significant drug-related serious adverse events. The PK analysis and the lack of severe safety events supports the applied age-appropriate dosing schedule for the enalapril ODMTs

    Model-dependent pharmacokinetic analysis of enalapril administered to healthy adult volunteers using orodispersible minitablets for use in pediatrics

    No full text
    Introduction: Comparative pharmacokinetic (PK) data analysis of drugs administered using developed child-appropriate and market authorized dosage formulation is sparse and is important in pediatric drug development. Objectives: To compare and evaluate any differences in PK of enalapril administered using two treatments of child-appropriate orodispersible minitablets (ODMTs) and market authorized reference tablet formulation (Renitec®) using PK compartment model and validated least square minimization method (LSMM) of parameter estimation. Methods: Full profile data sets were obtained from a phase I clinical trial, whereby three treatments of enalapril, ie, reference tablets with 240 mL water (treatment A), child-appropriate ODMTs with 240 mL (treatment B), and ODMTs dispersed in the mouth with 20 mL water (treatment C), were administered to 24 healthy adult volunteers. Virtual validation analysis was conducted using R program to select accurate and precise LSMM of parameter estimation. For the selection of PK model and estimation of parameters, enalapril data were fitted with one-and two-compartment models with first order of absorption and elimination, with and without incorporated lag time parameter (tlag). The log-transformed PK parameters were statistically compared by the two-sided paired t-test with the level of significance of P<0.05. Results: One-compartment model with first-order absorption and elimination and incorporated lag time adequately predicted concentrations of enalapril. Reciprocal of predicted concentration using iteratively reweighted LSMM was selected as the most appropriate method of parameter estimation. Comparison of PK parameters including rate constant of absorption and elimination, volume of distribution, and tlag between the three treatments showed significant difference (P=0.018) in tlag between treatments B and A only. Conclusion: Compared with reference formulation, enalapril administered from child-appropriate ODMTs administered with 240 mL water appeared 4 minutes earlier in serum. No other differences were observed in absorption, elimination, and relative bioavailability of drug between the three treatment arms.status: publishe

    Simultaneous Semi-Mechanistic Population Pharmacokinetic Modeling Analysis of Enalapril and Enalaprilat Serum and Urine Concentrations From Child Appropriate Orodispersible Minitablets

    No full text
    Enalapril is recommended as the first line of therapy and is proven to improve survival rates for treatment of Pediatric Heart Failure; however, an approved drug and child appropriate dosage formulation is still absent. The present analysis was conducted to perform a detailed model informed population pharmacokinetic analysis of prodrug enalapril and its active metabolite enalaprilat in serum and urine. Further, a model informed dosage form population-pharmacokinetic analysis was conducted to evaluate differences in pharmacokinetics of enalapril and its active metabolite enalaprilat when prodrug was administered to 24 healthy adults in a crossover, two periods, two treatments, phase I clinical trial using child-appropriate orodispersible mini-tablets (ODMT) and reference (Renitec®) dosage formulation. A simultaneous semi-mechanistic population-pharmacokinetic model was developed using NONMEM software, which predicted full profile serum and urine concentrations of enalapril and enalaprilat. First-order conditional estimation with interaction was used for parameter estimation. Transit compartments added using Erlang distribution method to predicted enalapril absorption and enalaprilat formation phases. Normalized body weight was identified as covariate related to enalapril volume of distribution. Visual predictive check (VPC) plots and conducted bootstrap analysis validated the model. The data from the two formulations were pooled for population-pharmacokinetic analysis and covariate effect of the formulation was found on mean transit time (MTT1) of enalapril absorption. In addition, data of each formulation were modeled separately and the estimated parameters of each individual administered both formulations were correlated using paired samples Wilcoxon rank test (p < 0.05 = significant) which also showed only a significant difference (p = 0.03) in MTT1 i.e., 5 min early appearance of enalapril from ODMT compared to reference tablets. No difference in the pharmacokinetics of active enalaprilat was found from the ODMT compared to the reference formulation. The population pharmacokinetic analysis provided detailed information about the pharmacokinetics of enalapril and enalaprilat, which showed that the ODMT formulation might have similar pharmacodynamic response compared to the reference formulation.status: publishe

    Total Synthesis of the Antimycobacterial Natural Product Chlorflavonin and Analogs via a Late-Stage Ruthenium(II)-Catalyzed ortho-C(sp2)-H-Hydroxylation

    Get PDF
    The continuous, worldwide spread of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) endanger the World Health Organization’s (WHO) goal to end the global TB pandemic by the year 2035. During the past 50 years, very few new drugs have been approved by medical agencies to treat drug-resistant TB. Therefore, the development of novel antimycobacterial drug candidates to combat the threat of drug-resistant TB is urgent. In this work, we developed and optimized a total synthesis of the antimycobacterial natural flavonoid chlorflavonin by selective ruthenium(II)-catalyzed ortho-C(sp(2))-H-hydroxylation of a substituted 3′-methoxyflavonoid skeleton. We extended our methodology to synthesize a small compound library of 14 structural analogs. The new analogs were tested for their antimycobacterial in vitro activity against Mycobacterium tuberculosis (Mtb) and their cytotoxicity against various human cell lines. The most promising new analog bromflavonin exhibited improved antimycobacterial in vitro activity against the virulent H37Rv strain of Mtb (Minimal Inhibitory Concentrations (MIC(90)) = 0.78 μm). In addition, we determined the chemical and metabolic stability as well as the pK(a) values of chlorflavonin and bromflavonin. Furthermore, we established a quantitative structure–activity relationship model using a thermodynamic integration approach. Our computations may be used for suggesting further structural changes to develop improved derivatives
    corecore