12 research outputs found

    Chemotherapy of human African trypanosomiasis

    No full text
    Human African trypanosomiasis or sleeping sickness is resurgent [1,2]. The disease is caused by subspecies of the parasitic haemoflagellate, Trypanosoma brucei. Infection starts with the bite of an infected tsetse fly (Glossina spp.). Parasites move from the site of infection to the draining lymphatic vessels and blood stream. The parasites proliferate within the bloodstream and later invade other tissues including the central nervous system. Once they have established themselves within the CNS, a progressive breakdown of neurological function accompanies the disease. Coma precedes death during this late phase. Two forms of the disease are recognised, one caused by Trypanosoma brucei rhodesiense, endemic in Eastern and Southern Africa, in which parasites rapidly invade the CNS causing death within weeks if untreated. T. b. gambiense, originally described in West Africa, but also widespread in Central Africa, proliferates more slowly and can take several years before establishing a CNS-involved infection. Many countries are in the midst of epidemics caused by gambiense-type parasites. Four drugs have been licensed to treat the disease [3] two of them, pentamidine and suramin, are used prior to CNS involvement. The arsenic-based drug, melarsoprol is used once parasites are established in the CNS. The fourth, eflornithine, is effective against late stage disease caused by T. b. gambiense, but is ineffective against T. b. rhodesiense. Another drug, nifurtimox is licensed for South American trypanosomiasis but also been used in trials against melarsoprol-refractory late sage disease. This review focuses on what is known about modes of action of current drugs and discusses targets for future drug development

    Sleeping sickness and the brain

    No full text
    Recent progress in understanding the neuro-pathological mechanisms of sleeping sickness reveals a complex relationship between the trypanosome parasite that causes this disease and the host nervous system. The pathology of late-stage sleeping sickness, in which the central nervous system is involved, is complicated and is associated with disturbances in the circadian rhythm of sleep. The blood-brain barrier, which separates circulating blood from the central nervous system, regulates the flow of materials to and from the brain. During the course of disease, the integrity of the blood-brain barrier is compromised. Dysfunction of the nervous system may be exacerbated by factors of trypanosomal origin or by host responses to parasites. Microscopic examination of cerebrospinal fluid remains the best way to confirm late-stage sleeping sickness, but this necessitates a risky lumbar puncture. Most drugs, including many trypanocides, do not cross the blood-brain barrier efficiently. Improved diagnostic and therapeutic approaches are thus urgently required. The latter might benefit from approaches which manipulate the blood-brain barrier to enhance permeability or to limit drug efflux. This review summarizes our current understanding of the neurological aspects of sleeping sickness, and envisages new research into blood-brain barrier models that are necessary to understand the interactions between trypanosomes and drugs active against them within the host nervous system

    Detection of arsenical drug resistance in Trypanosoma brucei with a simple fluorescence test

    No full text
    The resurgence of human African trypanosomiasis (HAT), coupled with an increased incidence of drug resistance, is of concern. We report a quick, simple, and sensitive test for identification of parasites resistant to melarsoprol, the main drug used to treat late stage HAT. Resistant parasites are defective in a plasma membrane transporter responsible for drug uptake. The same transporter carries the fluorescent diamidine DB99 (2,5-bis-(4-amidinophenyl)-3,4-dimethylfuran) into trypanosomes. The two DNA-containing structures in the trypanosome—the nucleus and the kinetoplast—begin to fluoresce within 1 min of introduction of DB99, unless drug resistant

    Comparative life cycle transcriptomics revises Leishmania mexicana genome annotation and links a chromosome duplication with parasitism of vertebrates

    Get PDF
    Leishmania spp. are protozoan parasites that have two principal life cycle stages: the motile promastigote forms that live in the alimentary tract of the sandfly and the amastigote forms, which are adapted to survive and replicate in the harsh conditions of the phagolysosome of mammalian macrophages. Here, we used Illumina sequencing of poly-A selected RNA to characterise and compare the transcriptomes of L. mexicana promastigotes, axenic amastigotes and intracellular amastigotes. These data allowed the production of the first transcriptome evidence-based annotation of gene models for this species, including genome-wide mapping of trans-splice sites and poly-A addition sites. The revised genome annotation encompassed 9,169 protein-coding genes including 936 novel genes as well as modifications to previously existing gene models. Comparative analysis of gene expression across promastigote and amastigote forms revealed that 3,832 genes are differentially expressed between promastigotes and intracellular amastigotes. A large proportion of genes that were downregulated during differentiation to amastigotes were associated with the function of the motile flagellum. In contrast, those genes that were upregulated included cell surface proteins, transporters, peptidases and many uncharacterized genes, including 293 of the 936 novel genes. Genome-wide distribution analysis of the differentially expressed genes revealed that the tetraploid chromosome 30 is highly enriched for genes that were upregulated in amastigotes, providing the first evidence of a link between this whole chromosome duplication event and adaptation to the vertebrate host in this group. Peptide evidence for 42 proteins encoded by novel transcripts supports the idea of an as yet uncharacterised set of small proteins in Leishmania spp. with possible implications for host-pathogen interactions
    corecore