98 research outputs found

    Hotter Is Better and Broader: Thermal Sensitivity of Fitness in a Population of Bacteriophages

    Get PDF
    Hotter is better is a hypothesis of thermal adaptation that posits that the rate-depressing effects of low temperature on biochemical reactions cannot be overcome by physiological plasticity or genetic adaptation. If so, then genotypes or populations adapted to warmer temperatures will have higher maximum growth rates than those adapted to low temperatures. Here we test hotter is better by measuring thermal reaction norms for intrinsic rate of population growth among an intraspecific collection of bacteriophages recently isolated from nature. Consistent with hotter is better, we find that phage genotypes with higher optimal temperatures have higher maximum growth rates. Unexpectedly, we also found that hotter is broader, meaning that the phages with the highest optimal temperatures also have the greatest temperature ranges. We found that the temperature sensitivity of fitness for phages is similar to that for insects

    An Evolving Genetic Architecture Interacts with Hill–Robertson Interference to Determine the Benefit of Sex

    Get PDF
    Sex is ubiquitous in the natural world, but the nature of its benefits remains controversial. Previous studies have suggested that a major advantage of sex is its ability to eliminate interference between selection on linked mutations, a phenomenon known as Hill–Robertson interference. However, those studies may have missed both important advantages and important disadvantages of sexual reproduction because they did not allow the distributions of mutational effects and interactions (i.e., the genetic architecture) to evolve. Here we investigate how Hill–Robertson interference interacts with an evolving genetic architecture to affect the evolutionary origin and maintenance of sex by simulating evolution in populations of artificial gene networks. We observed a long-term advantage of sex—equilibrium mean fitness of sexual populations exceeded that of asexual populations—that did not depend on population size. We also observed a short-term advantage of sex—sexual modifier mutations readily invaded asexual populations—that increased with population size, as was observed in previous studies. We show that the long- and short-term advantages of sex were both determined by differences between sexual and asexual populations in the evolutionary dynamics of two properties of the genetic architecture: the deleterious mutation rate (Ud) and recombination load (LR). These differences resulted from a combination of selection to minimize LR, which is experienced only by sexuals, and Hill–Robertson interference experienced primarily by asexuals. In contrast to the previous studies, in which Hill–Robertson interference had only a direct impact on the fitness advantages of sex, the impact of Hill–Robertson interference in our simulations was mediated additionally by an indirect impact on the efficiency with which selection acted to reduce Ud

    The Genetic Basis of Thermal Reaction Norm Evolution in Lab and Natural Phage Populations

    Get PDF
    Two major goals of laboratory evolution experiments are to integrate from genotype to phenotype to fitness, and to understand the genetic basis of adaptation in natural populations. Here we demonstrate that both goals are possible by re-examining the outcome of a previous laboratory evolution experiment in which the bacteriophage G4 was adapted to high temperatures. We quantified the evolutionary changes in the thermal reaction norms—the curves that describe the effect of temperature on the growth rate of the phages—and decomposed the changes into modes of biological interest. Our analysis indicated that changes in optimal temperature accounted for almost half of the evolutionary changes in thermal reaction norm shape, and made the largest contribution toward adaptation at high temperatures. Genome sequencing allowed us to associate reaction norm shape changes with particular nucleotide mutations, and several of the identified mutations were found to be polymorphic in natural populations. Growth rate measures of natural phage that differed at a site that contributed substantially to adaptation in the lab indicated that this mutation also underlies thermal reaction norm shape variation in nature. In combination, our results suggest that laboratory evolution experiments may successfully predict the genetic bases of evolutionary responses to temperature in nature. The implications of this work for viral evolution arise from the fact that shifts in the thermal optimum are characterized by tradeoffs in performance between high and low temperatures. Optimum shifts, if characteristic of viral adaptation to novel temperatures, would ensure the success of vaccine development strategies that adapt viruses to low temperatures in an attempt to reduce virulence at higher (body) temperatures

    Pleiotropic Costs of Niche Expansion in the RNA Bacteriophage  6

    Get PDF
    Natural and experimental systems have failed to universally demonstrate a trade-off between generalism and specialism. When a trade-off does occur it is difficult to attribute its cause to antagonistic pleiotropy without dissecting the genetic basis of adaptation, and few previous experiments provide these genetic data. Here we investigate the evolution of expanded host range (generalism) in the RNA virus Φ6, an experimental model system allowing adaptive mutations to be readily identified. We isolated 10 spontaneous host range mutants on each of three novel Pseudomonas hosts and determined whether these mutations imposed fitness costs on the standard laboratory host. Sequencing revealed that each mutant had one of nine nonsynonymous mutations in the Φ6 gene P3, important in host attachment. Seven of these nine mutations were costly on the original host, confirming the existence of antagonistic pleiotropy. In addition to this genetically imposed cost, we identified an epigenetic cost of generalism that occurs when phage transition between host types. Our results confirm the existence in Φ6 of two costs of generalism, genetic and environmental, but they also indicate that the cost is not always large. The possibility for cost-free niche expansion implies that varied ecological conditions may favor host shifts in RNA viruses

    Permissivity of Dipeptidyl Peptidase 4 Orthologs to Middle East Respiratory Syndrome Coronavirus Is Governed by Glycosylation and Other Complex Determinants

    Get PDF
    ABSTRACT Middle East respiratory syndrome coronavirus (MERS-CoV) utilizes dipeptidyl peptidase 4 (DPP4) as an entry receptor. While bat, camel, and human DPP4 support MERS-CoV infection, several DPP4 orthologs, including mouse, ferret, hamster, and guinea pig DPP4, do not. Previous work revealed that glycosylation of mouse DPP4 plays a role in blocking MERS-CoV infection. Here, we tested whether glycosylation also acts as a determinant of permissivity for ferret, hamster, and guinea pig DPP4. We found that, while glycosylation plays an important role in these orthologs, additional sequence and structural determinants impact their ability to act as functional receptors for MERS-CoV. These results provide insight into DPP4 species-specific differences impacting MERS-CoV host range and better inform our understanding of virus-receptor interactions associated with disease emergence and host susceptibility. IMPORTANCE MERS-CoV is a recently emerged zoonotic virus that is still circulating in the human population with an ∼35% mortality rate. With no available vaccines or therapeutics, the study of MERS-CoV pathogenesis is crucial for its control and prevention. However, in vivo studies are limited because MERS-CoV cannot infect wild-type mice due to incompatibilities between the virus spike and the mouse host cell receptor, mouse DPP4 (mDPP4). Specifically, mDPP4 has a nonconserved glycosylation site that acts as a barrier to MERS-CoV infection. Thus, one mouse model strategy has been to modify the mouse genome to remove this glycosylation site. Here, we investigated whether glycosylation acts as a barrier to infection for other nonpermissive small-animal species, namely, ferret, guinea pig, and hamster. Understanding the virus-receptor interactions for these DPP4 orthologs will help in the development of additional animal models while also revealing species-specific differences impacting MERS-CoV host range

    Competition and the origins of novelty: experimental evolution of niche-width expansion in a virus

    Get PDF
    Competition for resources has long been viewed as a key agent of divergent selection. Theory holds that populations facing severe intraspecific competition will tend to use a wider range of resources, possibly even using entirely novel resources that are less in demand. Yet, there have been few experimental tests of these ideas. Using the bacterial virus (bacteriophage) ϕ6 as a model system, we examined whether competition for host resources promotes the evolution of novel resource use. In the laboratory, ϕ6 exhibits a narrow host range but readily produces mutants capable of infecting novel bacterial hosts. Here, we show that when ϕ6 populations were subjected to intense intraspecific competition for their standard laboratory host, they rapidly evolved new generalist morphs that infect novel hosts. Our results therefore suggest that competition for host resources may drive the evolution of host range expansion in viruses. More generally, our findings demonstrate that intraspecific resource competition can indeed promote the evolution of novel resource-use phenotypes

    Evolutionary rescue and the coexistence of generalist and specialist competitors: an experimental test

    Get PDF
    Competition for resources is thought to play a critical role in both the origins and maintenance of biodiversity. Although numerous laboratory evolution experiments have confirmed that competition can be a key driver of adaptive diversification, few have demonstrated its role in the maintenance of the resulting diversity. We investigate the conditions that favour the origin and maintenance of alternative generalist and specialist resource-use phenotypes within the same population. Previously, we confirmed that competition for hosts among φ6 bacteriophage in a mixed novel (non-permissive) and ancestral (permissive) host microcosm triggered the evolution of a generalist phenotype capable of infecting both hosts. However, because the newly evolved generalists tended to competitively exclude the ancestral specialists, coexistence between the two phenotypes was rare. Here, we show that reducing the relative abundance of the novel host slowed the increase in frequency of the generalist phenotype, allowing sufficient time for the specialist to further adapt to the ancestral host. This adaptation resulted in ‘evolutionary rescue’ of the specialists, preventing their competitive exclusion by the generalists. Thus, our results suggest that competition promotes both the origin and maintenance of biodiversity when it is strong enough to favour a novel resource-use phenotype, but weak enough to allow adaptation of both the novel and ancestral phenotypes to their respective niches

    Beneficial Fitness Effects Are Not Exponential for Two Viruses

    Get PDF
    The distribution of fitness effects for beneficial mutations is of paramount importance in determining the outcome of adaptation. It is generally assumed that fitness effects of beneficial mutations follow an exponential distribution, for example, in theoretical treatments of quantitative genetics, clonal interference, experimental evolution, and the adaptation of DNA sequences. This assumption has been justified by the statistical theory of extreme values, because the fitnesses conferred by beneficial mutations should represent samples from the extreme right tail of the fitness distribution. Yet in extreme value theory, there are three different limiting forms for right tails of distributions, and the exponential describes only those of distributions in the Gumbel domain of attraction. Using beneficial mutations from two viruses, we show for the first time that the Gumbel domain can be rejected in favor of a distribution with a right-truncated tail, thus providing evidence for an upper bound on fitness effects. Our data also violate the common assumption that small-effect beneficial mutations greatly outnumber those of large effect, as they are consistent with a uniform distribution of beneficial effects

    The molecular epidemiology of HIV-1 envelope diversity during HIV-1 subtype C vertical transmission in Malawian mother???infant pairs

    Get PDF
    To study the relationship between HIV-1 subtype C genetic diversity and mother-to-child transmission and to determine if transmission of HIV-1C V1/V2 env variants occurs stochastically

    Comparison of SIV and HIV-1 Genomic RNA Structures Reveals Impact of Sequence Evolution on Conserved and Non-Conserved Structural Motifs

    Get PDF
    RNA secondary structure plays a central role in the replication and metabolism of all RNA viruses, including retroviruses like HIV-1. However, structures with known function represent only a fraction of the secondary structure reported for HIV-1NL4-3. One tool to assess the importance of RNA structures is to examine their conservation over evolutionary time. To this end, we used SHAPE to model the secondary structure of a second primate lentiviral genome, SIVmac239, which shares only 50% sequence identity at the nucleotide level with HIV-1NL4-3. Only about half of the paired nucleotides are paired in both genomic RNAs and, across the genome, just 71 base pairs form with the same pairing partner in both genomes. On average the RNA secondary structure is thus evolving at a much faster rate than the sequence. Structure at the Gag-Pro-Pol frameshift site is maintained but in a significantly altered form, while the impact of selection for maintaining a protein binding interaction can be seen in the conservation of pairing partners in the small RRE stems where Rev binds. Structures that are conserved between SIVmac239 and HIV-1NL4-3 also occur at the 5′ polyadenylation sequence, in the plus strand primer sites, PPT and cPPT, and in the stem-loop structure that includes the first splice acceptor site. The two genomes are adenosine-rich and cytidine-poor. The structured regions are enriched in guanosines, while unpaired regions are enriched in adenosines, and functionaly important structures have stronger base pairing than nonconserved structures. We conclude that much of the secondary structure is the result of fortuitous pairing in a metastable state that reforms during sequence evolution. However, secondary structure elements with important function are stabilized by higher guanosine content that allows regions of structure to persist as sequence evolution proceeds, and, within the confines of selective pressure, allows structures to evolve
    corecore