5 research outputs found

    A GeoNode-based platform for an effective exploitation of advanced DInSAR measurements

    Get PDF
    This work presents the development of an efficient tool for managing, visualizing, analysing, and integrating with other data sources, the deformation time-series obtained by applying the advanced differential interferometric synthetic aperture radar (DInSAR) techniques. To implement such a tool we extend the functionalities of GeoNode, which is a web-based platform providing an open source framework based on the Open Geospatial Consortium (OGC) standards, that allows development of Geospatial Information Systems (GIS) and Spatial Data Infrastructures (SDI). In particular, our efforts have been dedicated to enable the GeoNode platform to effectively analyze and visualize the spatio/temporal characteristics of the DInSAR deformation time-series and their related products. Moreover, the implemented multi-thread based new functionalities allow us to efficiently upload and update large data volumes of the available DInSAR results into a dedicated geodatabase. The examples we present, based on Sentinel-1 DInSAR results relevant to Italy, demonstrate the effectiveness of the extended version of the GeoNode platform

    The Satellite Data Thematic Core Service within the EPOS Research Infrastructure

    Get PDF
    Trabajo presentado en la European Geosciences Union General Assembly, celebrada en Viena (Austria), del 23 al 28 de abril de 2017EPOS, the European Plate Observing System, is a long-term plan to facilitate the integrated use of data, data products, software and services, available from distributed Research Infrastructures (RI), for solid Earth science in Europe. Indeed, EPOS integrates a large number of existing European RIs belonging to several fields of the Earth science, from seismology to geodesy, near fault and volcanic observatories as well as anthropogenic hazards. The EPOS vision is that the integration of the existing national and trans-national research infrastructures will increase access and use of the multidisciplinary data recorded by the solid Earth monitoring networks, acquired in laboratory experiments and/or produced by computational simulations. The establishment of EPOS will foster the interoperability of products and services in the Earth science field to a worldwide community of users. Accordingly, the EPOS aim is to integrate the diverse and advanced European Research Infrastructures for solid Earth science, and build on new e-science opportunities to monitor and understand the dynamic and complex solid-Earth System. One of the EPOS Thematic Core Services (TCS), referred to as Satellite Data, aims at developing, implementing and deploying advanced satellite data products and services, mainly based on Copernicus data (namely Sentinel acquisitions), for the Earth science community. This work intends to present the technological enhancements, fostered by EPOS, to deploy effective satellite services in a harmonized and integrated way. In particular, the Satellite Data TCS will deploy five services, EPOSAR, GDM, COMET, 3D-Def and MOD, which are mainly based on the exploitation of SAR data acquired by the Sentinel-1 constellation and designed to provide information on Earth surface displacements. In particular, the planned services will provide both advanced DInSAR products (deformation maps, velocity maps, deformation time series) and value-added measurements (source model, 3D displacement maps, seismic hazard maps). Moreover, the services will release both on-demand and systematic products. The latter will be generated and made available to the users on a continuous basis, by processing each Sentinel-1 data once acquired, over a defined number of areas of interest; while the former will allow users to select data, areas, and time period to carry out their own analyses via an on-line platform. The satellite components will be integrated within the EPOS infrastructure through a common and harmonized interface that will allow users to search, process and share remote sensing images and results. This gateway to the satellite services will be represented by the ESA- Geohazards Exploitation Platform (GEP), a new cloud-based platform for the satellite Earth Observations designed to support the scientific community in the understanding of high impact natural disasters. Satellite Data TCS will use GEP as the common interface toward the main EPOS portal to provide EPOS users not only with data products but also with relevant processing and visualisation software, thus allowing users to gather and process on a cloud-computing infrastructure large datasets without any need to download them locallyPeer reviewe

    UNSUPERVISED PARALLEL SBAS-DINSAR CHAIN FOR MASSIVE AND SYSTEMATIC SENTINEL-1 DATA PROCESSING

    No full text
    In this work we present an efficient interferometric processing chain, based on the advanced DInSAR algorithm referred to as Parallel Small BAseline Subset (P-SBAS), for the generation of Sentinel-1A (S1A) Interferometric Wide Swath deformation time-series, which is able to exploit distributed computing architectures. The presented S1A P-SBAS processing chain has been successfully implemented within the ESA Geohazard Exploitation Platform to provide an on-demand automatic service for the unsupervised generation of P-SBAS displacement time-series. To give an idea of the effectiveness of the presented S1A processing chain, as a preliminary result we show a 12-days interferometric analysis at continental scale, carried out by exploiting 150 S1A interferometric pairs acquired over Europe for an overall covered area of about 7,500,000 km2
    corecore