1,937 research outputs found

    Optical noise correlations and beating the standard quantum limit in advanced gravitational-wave detectors

    Full text link
    The uncertainty principle, applied naively to the test masses of a laser-interferometer gravitational-wave detector, produces a Standard Quantum Limit (SQL) on the interferometer's sensitivity. It has long been thought that beating this SQL would require a radical redesign of interferometers. However, we show that LIGO-II interferometers, currently planned for 2006, can beat the SQL by as much as a factor two over a bandwidth \Delta f \sim f, if their thermal noise can be pushed low enough. This is due to dynamical correlations between photon shot noise and radiation-pressure noise, produced by the LIGO-II signal-recycling mirror.Comment: 12 pages, 2 figures; minor changes, some references adde

    Gravitational waves from inspiraling binary black holes

    Get PDF
    Binary black holes are the most promising candidate sources for the first generation of earth-based interferometric gravitational-wave detectors. We summarize and discuss the state-of-the-art analytic techniques developed during the last years to better describe the late dynamical evolution of binary black holes of comparable masses.Comment: References added and updated; few typos correcte

    Discriminating between a Stochastic Gravitational Wave Background and Instrument Noise

    Full text link
    The detection of a stochastic background of gravitational waves could significantly impact our understanding of the physical processes that shaped the early Universe. The challenge lies in separating the cosmological signal from other stochastic processes such as instrument noise and astrophysical foregrounds. One approach is to build two or more detectors and cross correlate their output, thereby enhancing the common gravitational wave signal relative to the uncorrelated instrument noise. When only one detector is available, as will likely be the case with the Laser Interferometer Space Antenna (LISA), alternative analysis techniques must be developed. Here we show that models of the noise and signal transfer functions can be used to tease apart the gravitational and instrument noise contributions. We discuss the role of gravitational wave insensitive "null channels" formed from particular combinations of the time delay interferometry, and derive a new combination that maintains this insensitivity for unequal arm length detectors. We show that, in the absence of astrophysical foregrounds, LISA could detect signals with energy densities as low as Ωgw=6×1013\Omega_{\rm gw} = 6 \times 10^{-13} with just one month of data. We describe an end-to-end Bayesian analysis pipeline that is able to search for, characterize and assign confidence levels for the detection of a stochastic gravitational wave background, and demonstrate the effectiveness of this approach using simulated data from the third round of Mock LISA Data Challenges.Comment: 10 Pages, 10 Figure

    Laser-interferometer gravitational-wave optical-spring detectors

    Get PDF
    Using a quantum mechanical approach, we show that in a gravitational-wave interferometer composed of arm cavities and a signal recycling cavity, e.g., the LIGO-II configuration, the radiation-pressure force acting on the mirrors not only disturbs the motion of the free masses randomly due to quantum fluctuations, but also and more fundamentally, makes them respond to forces as though they were connected to an (optical) spring with a specific rigidity. This oscillatory response gives rise to a much richer dynamics than previously known, which enhances the possibilities for reshaping the LIGO-II's noise curves. However, the optical-mechanical system is dynamically unstable and an appropriate control system must be introduced to quench the instability.Comment: 7 pages, 3 figures; to appear in the Proceedings of 4th Edoardo Amaldi Conference on Gravitational Waves, Perth, Australia, 8-13 July 200

    Quantum noise in laser-interferometer gravitational-wave detectors with a heterodyne readout scheme

    Get PDF
    We analyze and discuss the quantum noise in signal-recycled laser interferometer gravitational-wave detectors, such as Advanced LIGO, using a heterodyne readout scheme and taking into account the optomechanical dynamics. Contrary to homodyne detection, a heterodyne readout scheme can simultaneously measure more than one quadrature of the output field, providing an additional way of optimizing the interferometer sensitivity, but at the price of additional noise. Our analysis provides the framework needed to evaluate whether a homodyne or heterodyne readout scheme is more optimal for second generation interferometers from an astrophysical point of view. As a more theoretical outcome of our analysis, we show that as a consequence of the Heisenberg uncertainty principle the heterodyne scheme cannot convert conventional interferometers into (broadband) quantum non-demolition interferometers.Comment: 16 pages, 8 figure

    Multiple stellar populations in Magellanic Cloud clusters. II. Evidence also in the young NGC1844?

    Full text link
    We use HST observations to study the LMC's young cluster NGC1844. We estimate the fraction and the mass-ratio distribution of photometric binaries and report that the main sequence presents an intrinsic breadth which can not be explained in terms of photometric errors only, and is unlikely due to differential reddening. We attempt some interpretation of this feature, including stellar rotation, binary stars, and the presence of multiple stellar populations with different age, metallicity, helium, or C+N+O abundance. Although we exclude age, helium, and C+N+O variations to be responsible of the main-sequence spread none of the other interpretations is conclusive.Comment: 9 Pages, 11 figures, accepted for publication in A&A

    The giant, horizontal and asymptotic branches of galactic globular clusters. I. The catalog, photometric observables and features

    Get PDF
    A catalog including a set of the most recent Color Magnitude Diagrams (CMDs) is presented for a sample of 61 Galactic Globular Clusters (GGCs). We used this data-base to perform an homogeneous systematic analysis of the evolved sequences (namely, Red Giant Branch (RGB), Horizontal Branch (HB) and Asymptotic Giant Branch (AGB)). Based on this analysis, we present: (1) a new procedure to measure the level of the ZAHB (V_ZAHB) and an homogeneous set of distance moduli obtained adopting the HB as standard candle; (2) an independent estimate for RGB metallicity indicators and new calibrations of these parameters in terms of both spectroscopic ([Fe/H]_CG97) and global metallicity ([M/H], including also the alpha-elements enhancement). The set of equations presented can be used to simultaneously derive a photometric estimate of the metal abundance and the reddening from the morphology and the location of the RGB in the (V,B-V)-CMD. (3) the location of the RGB-Bump (in 47 GGCs) and the AGB-Bump (in 9 GGCs). The dependence of these features on the metallicity is discussed. We find that by using the latest theoretical models and the new metallicity scales the earlier discrepancy between theory and observations (~0.4 mag) completely disappears.Comment: 51 pages, 23 figures, AAS Latex, macro rtrpp4.sty included, accepted by A
    corecore