424 research outputs found

    Cell patterning on photolithographically defined parylene-C:SiO2 substrates

    Get PDF
    Cell patterning platforms support broad research goals, such as construction of predefined in vitro neuronal networks and the exploration of certain central aspects of cellular physiology. To easily combine cell patterning with Multi-Electrode Arrays (MEAs) and silicon-based ‘lab on a chip’ technologies, a microfabrication-compatible protocol is required. We describe a method that utilizes deposition of the polymer parylene-C on SiO(2 )wafers. Photolithography enables accurate and reliable patterning of parylene-C at micron-level resolution. Subsequent activation by immersion in fetal bovine serum (or another specific activation solution) results in a substrate in which cultured cells adhere to, or are repulsed by, parylene or SiO(2) regions respectively. This technique has allowed patterning of a broad range of cell types (including primary murine hippocampal cells, HEK 293 cell line, human neuron-like teratocarcinoma cell line, primary murine cerebellar granule cells, and primary human glioma-derived stem-like cells). Interestingly, however, the platform is not universal; reflecting the importance of cell-specific adhesion molecules. This cell patterning process is cost effective, reliable, and importantly can be incorporated into standard microfabrication (chip manufacturing) protocols, paving the way for integration of microelectronic technology

    Characterisation of Reactive Ion Etch Processes for Ternary III-V Semiconductors

    Get PDF
    The work presented within this thesis concerns the development and characterisation of reactive ion etch processes for the compound Ill-V semiconductors Al0.3Ga0.7As, In0.53Ga0.47 As and In0.52Al0.48As. Two different etch chemistries, one based on the mixture of methane and hydrogen and the other formed from halogenated gases were studied

    Distribution and Drivers of Global Mangrove Forest Change, 1996-2010

    Get PDF
    For the period 1996-2010, we provide the first indication of the drivers behind mangrove land cover and land use change across the (pan-)tropics using time-series Japanese Earth Resources Satellite (JERS-1) Synthetic Aperture Radar (SAR) and Advanced Land Observing Satellite (ALOS) Phased Array-type L-band SAR (PALSAR) data. Multi-temporal radar mosaics were manually interpreted for evidence of loss and gain in forest extent and its associated driver. Mangrove loss as a consequence of human activities was observed across their entire range. Between 1996-2010 12% of the 1168 1?x1? radar mosaic tiles examined contained evidence of mangrove loss, as a consequence of anthropogenic degradation, with this increasing to 38% when combined with evidence of anthropogenic activity prior to 1996. The greatest proportion of loss was observed in Southeast Asia, whereby approximately 50% of the tiles in the region contained evidence of mangrove loss, corresponding to 18.4% of the global mangrove forest tiles. Southeast Asia contained the greatest proportion (33.8%) of global mangrove forest. The primary driver of anthropogenic mangrove loss was found to be the conversion of mangrove to aquaculture/agriculture, although substantial advance of mangroves was also evident in many regionspublishersversionPeer reviewe

    Low frequency graphene resonators for acoustic sensing

    Get PDF
    Graphene resonators have been fabricated in rectangular and circular geometries ranging from 1 to 3 mm in diameter. The resonant frequencies have been measured, and fitted to an analytical model. An optical profile of the graphene sheet has been taken, and the monolayer graphene has been confirmed to be of high quality using Raman spectroscopy. The graphene membranes have shown hookean behaviour with no evidence of deformation. The characterisation of the single layer graphene sheet on this large scale provides new information previously unavailable on the mechanical stability of graphene with ultra high aspect ratio.</p

    The Global Mangrove Watch—A New 2010 Global Baseline of Mangrove Extent

    Get PDF
    This study presents a new global baseline of mangrove extent for 2010 and has been released as the first output of the Global Mangrove Watch (GMW) initiative. This is the first study to apply a globally consistent and automated method for mapping mangroves, identifying a global extent of 137,600 km 2 . The overall accuracy for mangrove extent was 94.0% with a 99% likelihood that the true value is between 93.6&ndash;94.5%, using 53,878 accuracy points across 20 sites distributed globally. Using the geographic regions of the Ramsar Convention on Wetlands, Asia has the highest proportion of mangroves with 38.7% of the global total, while Latin America and the Caribbean have 20.3%, Africa has 20.0%, Oceania has 11.9%, North America has 8.4% and the European Overseas Territories have 0.7%. The methodology developed is primarily based on the classification of ALOS PALSAR and Landsat sensor data, where a habitat mask was first generated, within which the classification of mangrove was undertaken using the Extremely Randomized Trees classifier. This new globally consistent baseline will also form the basis of a mangrove monitoring system using JAXA JERS-1 SAR, ALOS PALSAR and ALOS-2 PALSAR-2 radar data to assess mangrove change from 1996 to the present. However, when using the product, users should note that a minimum mapping unit of 1 ha is recommended and that the error increases in regions of disturbance and where narrow strips or smaller fragmented areas of mangroves are present. Artefacts due to cloud cover and the Landsat-7 SLC-off error are also present in some areas, particularly regions of West Africa due to the lack of Landsat-5 data and persistence cloud cover. In the future, consideration will be given to the production of a new global baseline based on 10 m Sentinel-2 composites

    Automatic Detection of Open and Vegetated Water Bodies Using Sentinel 1 to Map African Malaria Vector Mosquito Breeding Habitats

    Get PDF
    Providing timely and accurate maps of surface water is valuable for mapping malaria risk and targeting disease control interventions. Radar satellite remote sensing has the potential to provide this information but current approaches are not suitable for mapping African malarial mosquito aquatic habitats that tend to be highly dynamic, often with emergent vegetation. We present a novel approach for mapping both open and vegetated water bodies using serial Sentinel-1 imagery for Western Zambia. This region is dominated by the seasonally inundated Upper Zambezi floodplain that suffers from a number of public health challenges. The approach uses open source segmentation and machine learning (extra trees classifier), applied to training data that are automatically derived using freely available ancillary data. Refinement is implemented through a consensus approach and Otsu thresholding to eliminate false positives due to dry flat sandy areas. The results indicate a high degree of accuracy (mean overall accuracy 92% st dev 3.6) providing a tractable solution for operationally mapping water bodies in similar large river floodplain unforested environments. For the period studied, 70% of the total water extent mapped was attributed to vegetated water, highlighting the importance of mapping both open and vegetated water bodies for surface water mapping

    Modification and characterisation of material hydrophobicity for surface acoustic wave driven microfluidics

    Get PDF
    Surface acoustic waves (SAW) generated in a piezoelectric substrate may be used to manipulate micro-scale droplets of liquid in a digital microfluidic system for lab-on-a-chip applications. The wettability of the surface over which a droplet is driven determines the ease and speed with which the droplet is propelled. This provides the opportunity to achieve fine control of SAW driven droplets simply by patterning of the surface into areas with different levels of wettability. This paper evaluates a number of different materials and surface preparation techniques and assesses their manufacturability and efficacy for this application. Test structures have been designed and developed to help optimise a fabrication process using the biocompatible polymer Parylene. Early results obtained using airflow as a driving force show that it is possible to manipulate droplets through direction changes of up to 60°. Additional work has been done using surface acoustic waves as the driving force to determine the extent to which droplets can be guided to desired locations

    Elucidation of critical pH-dependent structural changes in Botulinum Neurotoxin E

    Get PDF
    Botulinum Neurotoxins (BoNT) are the most potent toxins currently known. However, they also have therapeutic applications for an increasing number of motor related conditions due to their specificity, and low diffusion into the system. Although the start- and end- points for the BoNT mechanism of action are well-studied, a critical step remains poorly understood. It is theorised that BoNTs undergo a pH-triggered conformational shift, activating the neurotoxin by priming it to form a transmembrane (TM) channel. To test this hypothesis, we combined molecular dynamic (MD) simulations and small-angle x-ray scattering (SAXS), revealing a new conformation of BoNT/E. This conformation was exclusively observed in simulations below pH 5.5, as determined by principal component analysis (PCA), and its theoretical SAXS profile matched an experimental SAXS profile obtained at pH 4. Additionally, a localised secondary structural change was observed in MD simulations below pH 5.5, in a region previously identified as instrumental for membrane insertion for BoNT/A. These changes were found at a critical pH value for BoNTs in vivo, and may be relevant for their therapeutic use
    • …
    corecore