53 research outputs found

    Computationally efficient methods for modelling laser wakefield acceleration in the blowout regime

    Get PDF
    Electron self-injection and acceleration until dephasing in the blowout regime is studied for a set of initial conditions typical of recent experiments with 100 terawatt-class lasers. Two different approaches to computationally efficient, fully explicit, three-dimensional particle-in-cell modelling are examined. First, the Cartesian code VORPAL using a perfect-dispersion electromagnetic solver precisely describes the laser pulse and bubble dynamics, taking advantage of coarser resolution in the propagation direction, with a proportionally larger time step. Using third-order splines for macroparticles helps suppress the sampling noise while keeping the usage of computational resources modest. The second way to reduce the simulation load is using reduced-geometry codes. In our case, the quasi-cylindrical code CALDER-CIRC uses decomposition of fields and currents into a set of poloidal modes, while the macroparticles move in the Cartesian 3D space. Cylindrical symmetry of the interaction allows using just two modes, reducing the computational load to roughly that of a planar Cartesian simulation while preserving the 3D nature of the interaction. This significant economy of resources allows using fine resolution in the direction of propagation and a small time step, making numerical dispersion vanishingly small, together with a large number of particles per cell, enabling good particle statistics. Quantitative agreement of the two simulations indicates that they are free of numerical artefacts. Both approaches thus retrieve physically correct evolution of the plasma bubble, recovering the intrinsic connection of electron self-injection to the nonlinear optical evolution of the driver

    Axisymmetric simulations of vertical displacement events in tokamaks: A benchmark of M3D-C1, NIMROD and JOREK

    Get PDF
    A benchmark exercise for the modeling of vertical displacement events(VDEs) is presented and applied to the 3D nonlinear magneto-hydrodynamic codesM3D-C1, JOREK and NIMROD. The simulations are based on a vertically unstableNSTX equilibrium enclosed by an axisymmetric resistive wall with rectangular crosssection. A linear dependence of the linear VDE growth rates on the resistivity ofthe wall is recovered for sufficiently large wall conductivity and small temperatures inthe open field line region. The benchmark results show good agreement between theVDE growth rates obtained from linear NIMROD and M3D-C1simulations as wellas from the linear phase of axisymmetric nonlinear JOREK, NIMROD and M3D-C1simulations. Axisymmetric nonlinear simulations of a full VDE performed with thethree codes are compared and excellent agreement is found regarding plasma locationand plasma currents as well as eddy and halo currents in the wall.</p

    Multiple doublesex-Related Genes Specify Critical Cell Fates in a C. elegans Male Neural Circuit

    Get PDF
    In most animal species, males and females exhibit differences in behavior and morphology that relate to their respective roles in reproduction. DM (Doublesex/MAB-3) domain transcription factors are phylogenetically conserved regulators of sexual development. They are thought to establish sexual traits by sex-specifically modifying the activity of general developmental programs. However, there are few examples where the details of these interactions are known, particularly in the nervous system.In this study, we show that two C. elegans DM domain genes, dmd-3 and mab-23, regulate sensory and muscle cell development in a male neural circuit required for mating. Using genetic approaches, we show that in the circuit sensory neurons, dmd-3 and mab-23 establish the correct pattern of dopaminergic (DA) and cholinergic (ACh) fate. We find that the ETS-domain transcription factor gene ast-1, a non-sex-specific, phylogenetically conserved activator of dopamine biosynthesis gene transcription, is broadly expressed in the circuit sensory neuron population. However, dmd-3 and mab-23 repress its activity in most cells, promoting ACh fate instead. A subset of neurons, preferentially exposed to a TGF-beta ligand, escape this repression because signal transduction pathway activity in these cells blocks dmd-3/mab-23 function, allowing DA fate to be established. Through optogenetic and pharmacological approaches, we show that the sensory and muscle cell characteristics controlled by dmd-3 and mab-23 are crucial for circuit function.In the C. elegans male, DM domain genes dmd-3 and mab-23 regulate expression of cell sub-type characteristics that are critical for mating success. In particular, these factors limit the number of DA neurons in the male nervous system by sex-specifically regulating a phylogenetically conserved dopamine biosynthesis gene transcription factor. Homologous interactions between vertebrate counterparts could regulate sex differences in neuron sub-type populations in the brain

    Human becoming: Scope and challenges

    No full text
    The dialogue between Jacqueline Fawcett (JF) and the three authors, Debra A. Bournes (DB), Sandra Schmidt Bunkers (SSB), and Anthony J. Welch (AW), follows

    Reverence—Or Not?

    No full text
    • …
    corecore