121 research outputs found

    Kinks Dynamics in One-Dimensional Coupled Map Lattices

    Full text link
    We examine the problem of the dynamics of interfaces in a one-dimensional space-time discrete dynamical system. Two different regimes are studied : the non-propagating and the propagating one. In the first case, after proving the existence of such solutions, we show how they can be described using Taylor expansions. The second situation deals with the assumption of a travelling wave to follow the kink propagation. Then a comparison with the corresponding continuous model is proposed. We find that these methods are useful in simple dynamical situations but their application to complex dynamical behaviour is not yet understood.Comment: 17pages, LaTex,3 fig available on cpt.univ-mrs.fr directory pub/preprints/94/dynamical-systems/94-P.307

    Statistical Analysis of Magnetic Field Spectra

    Get PDF
    We have calculated and statistically analyzed the magnetic-field spectrum (the ``B-spectrum'') at fixed electron Fermi energy for two quantum dot systems with classically chaotic shape. This is a new problem which arises naturally in transport measurements where the incoming electron has a fixed energy while one tunes the magnetic field to obtain resonance conductance patterns. The ``B-spectrum'', defined as the collection of values Bi{B_i} at which conductance g(Bi)g(B_i) takes extremal values, is determined by a quadratic eigenvalue equation, in distinct difference to the usual linear eigenvalue problem satisfied by the energy levels. We found that the lower part of the ``B-spectrum'' satisfies the distribution belonging to Gaussian Unitary Ensemble, while the higher part obeys a Poisson-like behavior. We also found that the ``B-spectrum'' fluctuations of the chaotic system are consistent with the results we obtained from random matrices

    Stochastic stability versus localization in chaotic dynamical systems

    Full text link
    We prove stochastic stability of chaotic maps for a general class of Markov random perturbations (including singular ones) satisfying some kind of mixing conditions. One of the consequences of this statement is the proof of Ulam's conjecture about the approximation of the dynamics of a chaotic system by a finite state Markov chain. Conditions under which the localization phenomenon (i.e. stabilization of singular invariant measures) takes place are also considered. Our main tools are the so called bounded variation approach combined with the ergodic theorem of Ionescu-Tulcea and Marinescu, and a random walk argument that we apply to prove the absence of ``traps'' under the action of random perturbations.Comment: 27 pages, LaTe

    Analyticity of the SRB measure of a lattice of coupled Anosov diffeomorphisms of the torus

    Full text link
    We consider the "thermodynamic limit"of a d-dimensional lattice of hyperbolic dynamical systems on the 2-torus, interacting via weak and nearest neighbor coupling. We prove that the SRB measure is analytic in the strength of the coupling. The proof is based on symbolic dynamics techniques that allow us to map the SRB measure into a Gibbs measure for a spin system on a (d+1)-dimensional lattice. This Gibbs measure can be studied by an extension (decimation) of the usual "cluster expansion" techniques.Comment: 28 pages, 2 figure

    Canonical thermalization

    Full text link
    For quantum systems that are weakly coupled to a much 'bigger' environment, thermalization of possibly far from equilibrium initial ensembles is demonstrated: for sufficiently large times, the ensemble is for all practical purposes indistinguishable from a canonical density operator under conditions that are satisfied under many, if not all, experimentally realistic conditions

    Experimental Test of a Trace Formula for a Chaotic Three Dimensional Microwave Cavity

    Full text link
    We have measured resonance spectra in a superconducting microwave cavity with the shape of a three-dimensional generalized Bunimovich stadium billiard and analyzed their spectral fluctuation properties. The experimental length spectrum exhibits contributions from periodic orbits of non-generic modes and from unstable periodic orbit of the underlying classical system. It is well reproduced by our theoretical calculations based on the trace formula derived by Balian and Duplantier for chaotic electromagnetic cavities.Comment: 4 pages, 5 figures (reduced quality

    High Temperature Expansions and Dynamical Systems

    Full text link
    We develop a resummed high-temperature expansion for lattice spin systems with long range interactions, in models where the free energy is not, in general, analytic. We establish uniqueness of the Gibbs state and exponential decay of the correlation functions. Then, we apply this expansion to the Perron-Frobenius operator of weakly coupled map lattices.Comment: 33 pages, Latex; [email protected]; [email protected]

    Quantum Chaos, Irreversible Classical Dynamics and Random Matrix Theory

    Full text link
    The Bohigas--Giannoni--Schmit conjecture stating that the statistical spectral properties of systems which are chaotic in their classical limit coincide with random matrix theory is proved. For this purpose a new semiclassical field theory for individual chaotic systems is constructed in the framework of the non--linear σ\sigma-model. The low lying modes are shown to be associated with the Perron--Frobenius spectrum of the underlying irreversible classical dynamics. It is shown that the existence of a gap in the Perron-Frobenius spectrum results in a RMT behavior. Moreover, our formalism offers a way of calculating system specific corrections beyond RMT.Comment: 4 pages, revtex, no figure

    On the rate of quantum ergodicity in Euclidean billiards

    Full text link
    For a large class of quantized ergodic flows the quantum ergodicity theorem due to Shnirelman, Zelditch, Colin de Verdi\`ere and others states that almost all eigenfunctions become equidistributed in the semiclassical limit. In this work we first give a short introduction to the formulation of the quantum ergodicity theorem for general observables in terms of pseudodifferential operators and show that it is equivalent to the semiclassical eigenfunction hypothesis for the Wigner function in the case of ergodic systems. Of great importance is the rate by which the quantum mechanical expectation values of an observable tend to their mean value. This is studied numerically for three Euclidean billiards (stadium, cosine and cardioid billiard) using up to 6000 eigenfunctions. We find that in configuration space the rate of quantum ergodicity is strongly influenced by localized eigenfunctions like bouncing ball modes or scarred eigenfunctions. We give a detailed discussion and explanation of these effects using a simple but powerful model. For the rate of quantum ergodicity in momentum space we observe a slower decay. We also study the suitably normalized fluctuations of the expectation values around their mean, and find good agreement with a Gaussian distribution.Comment: 40 pages, LaTeX2e. This version does not contain any figures. A version with all figures can be obtained from http://www.physik.uni-ulm.de/theo/qc/ (File: http://www.physik.uni-ulm.de/theo/qc/ulm-tp/tp97-8.ps.gz) In case of any problems contact Arnd B\"acker (e-mail: [email protected]) or Roman Schubert (e-mail: [email protected]

    Chaotic eigenfunctions in momentum space

    Full text link
    We study eigenstates of chaotic billiards in the momentum representation and propose the radially integrated momentum distribution as useful measure to detect localization effects. For the momentum distribution, the radially integrated momentum distribution, and the angular integrated momentum distribution explicit formulae in terms of the normal derivative along the billiard boundary are derived. We present a detailed numerical study for the stadium and the cardioid billiard, which shows in several cases that the radially integrated momentum distribution is a good indicator of localized eigenstates, such as scars, or bouncing ball modes. We also find examples, where the localization is more strongly pronounced in position space than in momentum space, which we discuss in detail. Finally applications and generalizations are discussed.Comment: 30 pages. The figures are included in low resolution only. For a version with figures in high resolution see http://www.physik.uni-ulm.de/theo/qc/ulm-tp/tp99-2.htm
    corecore