303 research outputs found

    Inactivation of α-ketoglutarate dehydrogenase during oxidative decarboxylation of α-ketoadipic acid

    Get PDF
    Abstractα-Ketoglutarate dehydrogenase was inactivated irreversibly and completely during oxidation of α-ketoadipic acid. The inactivation was revealed both in the model system with ferricyanide and in the overall reaction catalyzed by the α-ketoglutarate dehydrogenase complex. Neither substrate depletion nor product accumulation induced the inactivation. The results obtained were compared with recent data on the enzyme inactivation during oxidation of α-ketoglutaric acid. The differences in the inactivation kinetics observed with the two substrates of the enzyme were analyzed. They seem not to reflect the different mechanisms of the inactivation, but, rather, depend on the changes in the rates of the individual stages of the process

    Effect of α-ketoglutarate and its structural analogues on hysteretic properties of α-ketoglutarate dehydrogenase

    Get PDF
    AbstractThe burst of product accumulation during the KGD reaction was investigated. It has been shown not to be the obligatory feature of catalysis, but appears when increasing the enzyme saturation by KG. Structural analogues of KG and the SH-group modification suppress the initial burst without preventing catalysis. The results obtained are in favour of the existence of the regulatory site for binding KG and its structural analogues essential for hysteretic properties of KGD

    Molecular mechanisms of the non-coenzyme action of thiamin in brain. Biochemical, structural and pathway analysis

    Get PDF
    Thiamin (vitamin B1) is a pharmacological agent boosting central metabolism through the action of the coenzyme thiamin diphosphate (ThDP). However, positive effects, including improved cognition, of high thiamin doses in neurodegeneration may be observed without increased ThDP or ThDPdependent enzymes in brain. Here, we determine protein partners and metabolic pathways where thiamin acts beyond its coenzyme role. Malate dehydrogenase, glutamate dehydrogenase and pyridoxal kinase were identified as abundant proteins binding to thiamin- or thiazolium-modified sorbents. Kinetic studies, supported by structural analysis, revealed allosteric regulation of these proteins by thiamin and/or its derivatives. Thiamin triphosphate and adenylated thiamin triphosphate activate glutamate dehydrogenase. Thiamin and ThDP regulate malate dehydrogenase isoforms and pyridoxal kinase. Thiamin regulation of enzymes related to malate-aspartate shuttle may impact on malate/citrate exchange, responsible for exporting acetyl residues from mitochondria. Indeed, bioinformatic analyses found an association between thiamin- and thiazolium-binding proteins and the term acetylation. Our interdisciplinary study shows that thiamin is not only a coenzyme for acetyl-CoA production, but also an allosteric regulator of acetyl-CoA metabolism including regulatory acetylation of proteins and acetylcholine biosynthesis. Moreover, thiamin action in neurodegeneration may also involve neurodegeneration-related 14-3-3, DJ-1 and β-amyloid precursor proteins identified among the thiamin- and/or thiazolium-binding proteins

    The multifaceted role of vitamin b6 in cancer: drosophila as a model system to investigate dna damage

    Get PDF
    A perturbed uptake of micronutrients, such as minerals and vitamins, impacts on different human diseases, including cancer and neurological disorders. Several data converge towards a crucial role played by many micronutrients in genome integrity maintenance and in the establishment of a correct DNA methylation pattern. Failure in the proper accomplishment of these processes accelerates senescence and increases the risk of developing cancer, by promoting the formation of chromosome aberrations and deregulating the expression of oncogenes. Here, the main recent evidence regarding the impact of some B vitamins on DNA damage and cancer is summarized, providing an integrated and updated analysis, mainly centred on vitamin B6. In many cases, it is difficult to finely predict the optimal vitamin rate that is able to protect against DNA damage, as this can be influenced by a given individual's genotype. For this purpose, a precious resort is represented by model organisms which allow limitations imposed by more complex systems to be overcome. In this review, we show that Drosophila can be a useful model to deeply understand mechanisms underlying the relationship between vitamin B6 and genome integrity

    A Survey of Oxidative Paracatalytic Reactions Catalyzed by Enzymes That Generate Carbanionic Intermediates: Implications for ROS Production, Cancer Etiology, and Neurodegenerative Diseases

    Get PDF
    Enzymes that generate carbanionic intermediates often catalyze paracatalytic reactions with O2 and other electrophiles not considered “normal” reactants. For example, pyridoxal 5′-phosphate (PLP)—containing pig kidney dopa decarboxylase oxidizes dopamine with molecular O2 to 3,4-dihydroxyphenylacetaldehyde at about 1% of the rate at which it catalyzes nonoxidative dopa decarboxylation. The mutant Y332F enzyme, however, catalyzes stoichiometric conversion of dopa to 3,4-dihydroxyphenylacetaldehyde, suggesting that even minor structural changes may alter or initiate paracatalytic reactions catalyzed by certain enzymes. Carbanions generated by several thiamine diphosphate (ThDP)—dependent enzymes react with different electrophiles, transforming some xenobiotics and endogenous compounds into potentially biologically hazardous products. The detrimental effects of paracatalytic reactions may be greatly increased by cellular compartmentation of enzymes and intermediates. For example, in two of the the three multienzyme complexes involved in oxidative α-keto acid decarboxylation, paracatalytic reactions of the third component inactivate the first carbanion-generating component. In this review we provide an outline of carbanion-generating enzymes known to catalyze paracatalytic reactions. We also discuss the potential of some of these reactions to contribute to irreversible damage in cancer and neurodegeneration through disease-induced alterations in the metabolic state and/or protein structure

    Molecular characterization of pyridoxine 5′-phosphate oxidase and its pathogenic forms associated with neonatal epileptic encephalopathy

    Get PDF
    Defects of vitamin B6 metabolism are responsible for severe neurological disorders, such as pyridoxamine 5′-phosphate oxidase deficiency (PNPOD; OMIM: 610090), an autosomal recessive inborn error of metabolism that usually manifests with neonatal-onset severe seizures and subsequent encephalopathy. At present, 27 pathogenic mutations of the gene encoding human PNPO are known, 13 of which are homozygous missense mutations; however, only 3 of them have been characterised with respect to the molecular and functional properties of the variant enzyme forms. Moreover, studies on wild type and variant human PNPOs have so far largely ignored the regulation properties of this enzyme. Here, we present a detailed characterisation of the inhibition mechanism of PNPO by pyridoxal 5′-phosphate (PLP), the reaction product of the enzyme. Our study reveals that human PNPO has an allosteric PLP binding site that plays a crucial role in the enzyme regulation and therefore in the regulation of vitamin B6 metabolism in humans. Furthermore, we have produced, recombinantly expressed and characterised several PNPO pathogenic variants responsible for PNPOD (G118R, R141C, R225H, R116Q/R225H, and X262Q). Such replacements mainly affect the catalytic activity of PNPO and binding of the enzyme substrate and FMN cofactor, leaving the allosteric properties unaltered

    Behavioral Impact of the Regulation of the Brain 2-Oxoglutarate Dehydrogenase Complex by Synthetic Phosphonate Analog of 2-Oxoglutarate: Implications into the Role of the Complex in Neurodegenerative Diseases

    Get PDF
    Decreased activity of the mitochondrial 2-oxoglutarate dehydrogenase complex (OGDHC) in brain accompanies neurodegenerative diseases. To reveal molecular mechanisms of this association, we treated rats with a specific inhibitor of OGDHC, succinyl phosphonate, or exposed them to hypoxic stress. In males treated with succinyl phosphonate and in pregnancy-sensitized females experiencing acute hypobaric hypoxia, we revealed upregulation of brain OGDHC (within 24 hours), with the activity increase presumably representing the compensatory response of brain to the OGDHC inhibition. This up-regulation of brain OGDHC was accompanied by an increase in exploratory activity and a decrease in anxiety of the experimental animals. Remarkably, the hypoxia-induced elevation of brain OGDHC and most of the associated behavioral changes were abrogated by succinyl phosphonate. The antagonistic action of hypoxia and succinyl phosphonate demonstrates potential therapeutic significance of the OGDHC regulation by the phosphonate analogs of 2-oxoglutarate
    corecore