130 research outputs found

    Transplantation of canine olfactory ensheathing cells producing chondroitinase ABC promotes chondroitin sulphate proteoglycan digestion and axonal sprouting following spinal cord injury

    Get PDF
    Olfactory ensheathing cell (OEC) transplantation is a promising strategy for treating spinal cord injury (SCI), as has been demonstrated in experimental SCI models and naturally occurring SCI in dogs. However, the presence of chondroitin sulphate proteoglycans within the extracellular matrix of the glial scar can inhibit efficient axonal repair and limit the therapeutic potential of OECs. Here we have used lentiviral vectors to genetically modify canine OECs to continuously deliver mammalian chondroitinase ABC at the lesion site in order to degrade the inhibitory chondroitin sulphate proteoglycans in a rodent model of spinal cord injury. We demonstrate that these chondroitinase producing canine OECs survived at 4 weeks following transplantation into the spinal cord lesion and effectively digested chondroitin sulphate proteoglycans at the site of injury. There was evidence of sprouting within the corticospinal tract rostral to the lesion and an increase in the number of corticospinal axons caudal to the lesion, suggestive of axonal regeneration. Our results indicate that delivery of the chondroitinase enzyme can be achieved with the genetically modified OECs to increase axon growth following SCI. The combination of these two promising approaches is a potential strategy for promoting neural regeneration following SCI in veterinary practice and human patients

    Bar-Coded Pyrosequencing Reveals the Responses of PBDE-Degrading Microbial Communities to Electron Donor Amendments

    Get PDF
    Polybrominated diphenyl ethers (PBDEs) can be reductively degraded by microorganisms under anaerobic conditions. However, little is known about the effect of electron donors on microbial communities involved in PBDEs degradation. Here we employed 454 Titanium pyrosequencing to examine the phylogenetic diversity, composition, structure and dynamics of microbial communities from microcosms under the conditions of different electron donor amendments. The community structures in each of the five alternate electron donor enrichments were significantly shifted in comparison with those of the control microcosm. Commonly existing OTUs between the treatment and control consortia increased from 5 to 17 and more than 50% of OTUs increased around 13.7 to 186 times at least in one of the microcosms after 90-days enrichment. Although the microbial communities at different taxonomic levels were significantly changed by different environmental variable groups in redundancy analysis, significant correlations were observed between the microbial communities and PBDE congener profiles. The lesser-brominated PBDE congeners, tri-BDE congener (BDE-32) and hexa-BDE, were identified as the key factors shaping the microbial community structures at OTU level. Some rare populations, including the known dechlorinating bacterium, Dehalobacter, showed significant positive-correlation with the amounts of PBDE congeners in the consortia. The same results were also observed on some unclassified bacteria. These results suggest that PBDEs-degrading microbial communities can be successfully enriched, and their structures and compositions can be manipulated through adjusting the environmental parameters

    Remyelination after chronic spinal cord injury is associated with proliferation of endogenous adult progenitor cells after systemic administration of guanosine

    Get PDF
    Axonal demyelination is a consistent pathological sequel to chronic brain and spinal cord injuries and disorders that slows or disrupts impulse conduction, causing further functional loss. Since oligodendroglial progenitors are present in the demyelinated areas, failure of remyelination may be due to lack of sufficient proliferation and differentiation of oligodendroglial progenitors. Guanosine stimulates proliferation and differentiation of many types of cells in vitro and exerts neuroprotective effects in the central nervous system (CNS). Five weeks after chronic traumatic spinal cord injury (SCI), when there is no ongoing recovery of function, intraperitoneal administration of guanosine daily for 2 weeks enhanced functional improvement correlated with the increase in myelination in the injured cord. Emphasis was placed on analysis of oligodendrocytes and NG2-positive (NG2+) cells, an endogenous cell population that may be involved in oligodendrocyte replacement. There was an increase in cell proliferation (measured by bromodeoxyuridine staining) that was attributable to an intensification in progenitor cells (NG2+ cells) associated with an increase in mature oligodendrocytes (determined by Rip+ staining). The numbers of astroglia increased at all test times after administration of guanosine whereas microglia only increased in the later stages (14 days). Injected guanosine and its breakdown product guanine accumulated in the spinal cords; there was more guanine than guanosine detected. We conclude that functional improvement and remyelination after systemic administration of guanosine is due to the effect of guanosine/guanine on the proliferation of adult progenitor cells and their maturation into myelin-forming cells. This raises the possibility that administration of guanosine may be useful in the treatment of spinal cord injury or demyelinating diseases such as multiple sclerosis where quiescent oligodendroglial progenitors exist in demyelinated plaques

    Dynamic control of proinflammatory cytokines Il-1β and Tnf-α by macrophages in zebrafish spinal cord regeneration

    Get PDF
    Spinal cord injury leads to a massive response of innate immune cells in non-regenerating mammals, but also in successfully regenerating zebrafish. However, the role of the immune response in successful regeneration is poorly defined. Here we show that inhibiting inflammation reduces and promoting it accelerates axonal regeneration in spinal-lesioned zebrafish larvae. Mutant analyses show that peripheral macrophages, but not neutrophils or microglia, are necessary for repair. Macrophage-less irf8 mutants show prolonged inflammation with elevated levels of Tnf-α and Il-1β. Inhibiting Tnf-α does not rescue axonal growth in irf8 mutants, but impairs it in wildtype animals, indicating a pro-regenerative role of Tnf-α. In contrast, decreasing Il-1β levels or number of Il-1β+ neutrophils rescue functional regeneration in irf8 mutants. However, during early regeneration, interference with Il-1β function impairs regeneration in irf8 and wildtype animals. Hence, inflammation is dynamically controlled by macrophages to promote functional spinal cord regeneration in zebrafish

    Variation in content and function of non-neuronal cells in the outgrowth of sympathetic ganglia from embryos of differing age

    No full text
    Studies on cellular interactions in the developing nervous system are greatly facilitated by the availability of tissue culture preparations that contain single or combined populations of neurons and non-neuronal cells (NNCs). Using superior cervical ganglia (SCG) from early E15 rats on air-dried collagen, we were able to prepare cultures containing neurons along with Schwann cells (SCs) as the only NNC type present without the use of antimitotic treatment and cultures containing only neurons, following brief antimitotic treatment. Light-microscopic observation of E15 outgrowth showed a uniform population of flattened cells, unlike that of E20 cultures, which contained a mixture of spindle-shaped and flattened cells. Autoradiograms following [3H]thymidine administration to E15 cultures revealed a striking gradient of nuclear labeling: Only a few cells were labeled near the explant and nearly all cells were labeled at the growth front. This was in marked contrast to E20 cultures, in which nuclei were labeled throughout the outgrowth. The conclusion that the labeling gradient is explained by the presence of SCs without other NNC types in E15 cultures was confirmed by immunocytochemical studies. Anti-laminin antibodies stain only those extracellular matrix components related to the SC surface, whereas anti-fibronectin antibodies stain fibroblast- related components (Cornbrooks et al., 1983a). Anti-laminin antibodies stained cell surfaces in both E15 and E20 outgrowth. E15 outgrowth did not stain with anti-fibronectin antibodies although marked staining was obtained in E20 cultures. Electron microscopy confirmed the presence of only SCs in E15, and of both SCs and fibroblasts in E20 outgrowth. Thus, it appears that there is a narrow developmental window in which the ganglia contain neurons and SCs but relatively few fibroblast components; cultures prepared from ganglia at this stage form outgrowth containing only neurites and SCs without antimitotic treatment. Surprisingly, neither SC ensheathment nor SC basal lamina formation was normal in E15 and E20 outgrowth. When either E15 or E20 SCG SCs were transplanted onto dorsal root ganglion neurons free of endogenous SCs, however, the sensory neurites were typically ensheathed or myelinated and basal lamina appeared 9 d later, identifying the SCG NNCs as functionally competent SCs

    Importance of the vasculature in cyst formation after spinal cord injury

    No full text
    • …
    corecore