18 research outputs found

    Metabolic adaptations during extreme anoxia in the turtle heart and their implications for ischemia-reperfusion injury.

    Get PDF
    ATP depletion and succinate accumulation during ischemia lead to oxidative damage to mammalian organs upon reperfusion. In contrast, freshwater turtles survive weeks of anoxia at low temperatures without suffering from oxidative damage upon reoxygenation, but the mechanisms are unclear. To determine how turtles survive prolonged anoxia, we measured ~80 metabolites in hearts from cold-acclimated (5 °C) turtles exposed to 9 days anoxia and compared the results with those for normoxic turtles (25 °C) and mouse hearts exposed to 30 min of ischemia. In turtles, ATP and ADP decreased to new steady-state levels during fasting and cold-acclimation and further with anoxia, but disappeared within 30 min of ischemia in mouse hearts. High NADH/NAD+ ratios were associated with succinate accumulation in both anoxic turtles and ischemic mouse hearts. However, succinate concentrations and succinate/fumarate ratios were lower in turtle than in mouse heart, limiting the driving force for production of reactive oxygen species (ROS) upon reoxygenation in turtles. Furthermore, we show production of ROS from succinate is prevented by re-synthesis of ATP from ADP. Thus, maintenance of an ATP/ADP pool and low succinate accumulation likely protects turtle hearts from anoxia/reoxygenation injury and suggests metabolic interventions as a therapeutic approach to limit ischemia/reperfusion injury in mammals

    Let-7 microRNA controls invasion-promoting lysosomal changes via the oncogenic transcription factor myeloid zinc finger-1

    Get PDF
    Cancer cells utilize lysosomes for invasion and metastasis. Myeloid Zinc Finger1 (MZF1) is an ErbB2-responsive transcription factor that promotes invasion of breast cancer cells via upregulation of lysosomal cathepsins B and L. Here we identify let-7 microRNA, a well-known tumor suppressor in breast cancer, as a direct negative regulator of MZF1. Analysis of primary breast cancer tissues reveals a gradual upregulation of MZF1 from normal breast epithelium to invasive ductal carcinoma and a negative correlation between several let-7 family members and MZF1 mRNA, suggesting that the inverse regulatory relationship between let-7 and MZF1 may play a role in the development of invasive breast cancer. Furthermore, we show that MZF1 regulates lysosome trafficking in ErbB2-positive breast cancer cells. In line with this, MZF1 depletion or let-7 expression inhibits invasion-promoting anterograde trafficking of lysosomes and invasion of ErbB2-expressing MCF7 spheres. The results presented here link MZF1 and let-7 to lysosomal processes in ErbB2-positive breast cancer cells that in non-cancerous cells have primarily been connected to the transcription factor EB. Identifying MZF1 and let-7 as regulators of lysosome distribution in invasive breast cancer cells, uncouples cancer-associated, invasion-promoting lysosomal alterations from normal lysosomal functions and thus opens up new possibilities for the therapeutic targeting of cancer lysosomes.Peer reviewe

    Intrinsic Mechanisms Underlying Hypoxia-Tolerant Mitochondrial Phenotype During Hypoxia-Reoxygenation Stress in a Marine Facultative Anaerobe, the Blue Mussel Mytilus edulis

    No full text
    Hypoxia is common in marine environments and a major stressor for marine organisms inhabiting benthic and intertidal zones. Several studies have explored the responses of these organisms to hypoxic stress at the whole organism level with a focus on energy metabolism and mitochondrial response, but the instrinsic mitochondrial responses that support the organelle’s function under hypoxia and reoxygenation (H/R) stress are not well understood. We studied the effects of acute H/R stress (10 min anoxia followed by 15 min reoxygenation) on mitochondrial respiration, production of reactive oxygen species (ROS) and posttranslational modifications (PTM) of the proteome in a marine facultative anaerobe, the blue mussel Mytilus edulis. The mussels’ mitochondria showed increased OXPHOS respiration and suppressed proton leak resulting in a higher coupling efficiency after H/R stress. ROS production decreased in both the resting (LEAK) and phosphorylating (OXPHOS) state indicating that M. edulis was able to prevent oxidative stress and mitochondrial damage during reoxygenation. Hypoxia did not lead to rearrangement of the mitochondrial supercomplexes but impacted the mitochondrial phosphoproteome including the proteins involved in OXPHOS, amino acid- and fatty acid catabolism, and protein quality control. This study indicates that mussels’ mitochondria possess intrinsic mechanisms (including regulation via reversible protein phosphorylation) that ensure high respiratory flux and mitigate oxidative damage during H/R stress and contribute to the hypoxia-tolerant mitochondrial phenotype of this metabolically plastic species
    corecore