100 research outputs found

    Dual-Source CT Angiography of Peripheral Arterial Stents: In Vitro Evaluation of 22 Different Stent Types

    Get PDF
    Purpose. To test different peripheral arterial stents using four image reconstruction approaches with respect to lumen visualization, lumen attenuation and image noise in dual-source multidetector row CT (DSCT) in vitro. Methods and Materials. 22 stents (nitinol, steel, cobalt-alloy, tantalum, platinum alloy) were examined in a vessel phantom. All stents were imaged in axial orientation with standard parameters. Image reconstructions were obtained with four different convolution kernels. To evaluate visualization characteristics of the stent, the lumen diameter, intraluminal density and noise were measured. Results. The mean percentage of the visible stent lumen diameter from the nominal stent diameter was 74.5% ± 5.7 for the medium-sharp kernel, 72.8% ± 6.4 for the medium, 70.8% ± 6.4 for the medium-smooth and 67.6% ± 6.6 for the smooth kernel. Mean values of lumen attenuation were 299.7HU ± 127 (medium-sharp), 273.9HU ± 68 (medium), 270.7HU ± 53 (medium-smooth) and 265.8HU ± 43. Mean image noise was: 54.6 ± 6.3, 20.5 ± 1.7, 16.3 ± 1.7, 14.0 ± 2 respectively. Conclusion. Visible stent lumen diameter varies depending on stent type and scan parameters. Lumen diameter visibility increases with the sharpness of the reconstruction kernel. Smoother kernels provide more realistic density measurements inside the stent lumen and less image noise

    A novel multiparametric imaging approach to acute myocarditis using T2-mapping and CMR feature tracking

    Get PDF
    Background: The aim of this study was to evaluate the diagnostic potential of a novel cardiovascular magnetic resonance (CMR) based multiparametric imaging approach in suspected myocarditis and to compare it to traditional Lake Louise criteria (LLC). Methods: CMR data from 67 patients with suspected acute myocarditis were retrospectively analyzed. Seventeen age- and gender-matched healthy subjects served as control. T2-mapping data were acquired using a Gradient-Spin-Echo T2-mapping sequence in short-axis orientation. T2-maps were segmented according to the 16-segments AHA-model and segmental T2 values and pixel-standard deviation (SD) were recorded. Afterwards, the parameters maxT2 (the highest segmental T2 value) and madSD (the mean absolute deviation (MAD) of the pixel-SDs) were calculated for each subject. Cine sequences in three long axes and a stack of short-axis views covering the left and right ventricle were analyzed using a dedicated feature tracking algorithm. Results: A multiparametric imaging model containing madSD and LV global circumferential strain (GCSLV) resulted in the highest diagnostic performance in receiver operating curve analyses (area under the curve [AUC] 0.84) when compared to any model containing a single imaging parameter or to LLC (AUC 0.79). Adding late gadolinium enhancement (LGE) to the model resulted in a further increased diagnostic performance (AUC 0.93) and yielded the highest diagnostic sensitivity of 97% and specificity of 77%. Conclusions: A multiparametric CMR imaging model including the novel T2-mapping derived parameter madSD, the feature tracking derived strain parameter GCSLV and LGE yields superior diagnostic sensitivity in suspected acute myocarditis when compared to any imaging parameter alone and to LLC. © 2017 The Author(s)

    MR Angiography of Peripheral Arterial Stents: In Vitro Evaluation of 22 Different Stent Types

    Get PDF
    Purpose. To evaluate stent lumen visibility of a large sample of different peripheral arterial (iliac, renal, carotid) stents using magnetic resonance angiography in vitro. Materials and Methods. 21 different stents and one stentgraft (10 nitinol, 7 316L, 2 tantalum, 1 cobalt superalloy, 1 PET + cobalt superalloy, and 1 platinum alloy) were examined in a vessel phantom (vessel diameters ranging from 5 to 13 mm) filled with a solution of Gd-DTPA. Stents were imaged at 1.5 Tesla using a T1-weighted 3D spoiled gradient-echo sequence. Image analysis was performed measuring three categories: Signal intensity in the stent lumen, lumen visibility of the stented lumen, and homogeneity of the stented lumen. The results were classified using a 3-point scale (good, intermediate, and poor results). Results. 7 stents showed good MR lumen visibility (4x nitinol, 2x tantalum, and 1x cobalt superalloy). 9 stents showed intermediate results (5x nitinol, 2x 316L, 1x PET + cobalt superalloy, and 1x platinum alloy) and 6 stents showed poor results (1x nitinol, and 5x 316L). Conclusion. Stent lumen visibility varies depending on the stent material and type. Some products show good lumen visibility which may allow the detection of stenoses inside the lumen, while other products cause artifacts which prevent reliable evaluation of the stent lumen with this technique

    Quantification of biventricular myocardial function using cardiac magnetic resonance feature tracking, endocardial border delineation and echocardiographic speckle tracking in patients with repaired tetralogy of fallot and healthy controls

    Get PDF
    BACKGROUND: Parameters of myocardial deformation have been suggested to be superior to conventional measures of ventricular function in patients with tetralogy of Fallot (ToF), but have required non-routine, tagged cardiovascular magnetic resonance (CMR) techniques. We assessed biventricular myocardial function using CMR cine-based feature tracking (FT) and compared it to speckle tracking echocardiography (STE) and to simple endocardial border delineation (EBD). In addition, the relation between parameters of myocardial deformation and clinical parameters was assessed. METHODS: Overall, 28 consecutive adult patients with repaired ToF (age 40.4 ± 13.3 years) underwent standard steady-state-free precession sequence CMR, echocardiography, and cardiopulmonary exercise testing. In addition, 25 healthy subjects served as controls. Myocardial deformation was assessed by CMR based FT (TomTec Diogenes software), CMR based EBD (using custom written software) and STE (TomTec Cardiac Performance Analysis software). RESULTS: Feature tracking was feasible in all subjects. A close agreement was found between measures of global left (LV) and right ventricular (RV) global strain. Interobserver agreement for FT and STE was similar for longitudinal LV global strain, but FT showed better inter-observer reproducibility than STE for circumferential or radial LV and longitudinal RV global strain. Reproducibility of regional strain on FT was, however, poor. The relative systolic length change of the endocardial border measured by EBD yielded similar results to FT global strain. Clinically, biventricular longitudinal strain on FT was reduced compared to controls (P < 0.0001) and was related to the number of previous cardiac operations. In addition, FT derived RV strain was related to exercise capacity and VE/VCO(2)-slope. CONCLUSIONS: Although neither the inter-study reproducibility nor accuracy of FT software were investigated, and its inter-observer reproducibility for regional strain calculation was poor, its calculations of global systolic strain showed similar or better inter-oberver reproducibility than those by STE, and could be applied across RV image regions inaccessible to echo. ‘Global strain’ calculated by EBD gave similar results to FT. Measurements made using FT related to exercise tolerance in ToF patients suggesting that the approach could have clinical relevance and deserves further study

    Modeling autosomal recessive cutis laxa type 1C in mice reveals distinct functions for Ltbp-4 isoforms

    Get PDF
    Recent studies have revealed an important role for LTBP-4 in elastogenesis. Its mutational inactivation in humans causes autosomal recessive cutis laxa type 1C (ARCL1C), which is a severe disorder caused by defects of the elastic fiber network. Although the human gene involved in ARCL1C has been discovered based on similar elastic fiber abnormalities exhibited by mice lacking the short Ltbp-4 isoform (Ltbp4S(-/-)), the murine phenotype does not replicate ARCL1C. We therefore inactivated both Ltbp-4 isoforms in the mouse germline to model ARCL1C. Comparative analysis of Ltbp4S(-/-) and Ltbp4-null (Ltbp4(-/-)) mice identified Ltbp-4L as an important factor for elastogenesis and postnatal survival, and showed that it has distinct tissue expression patterns and specific molecular functions. We identified fibulin-4 as a previously unknown interaction partner of both Ltbp-4 isoforms and demonstrated that at least Ltbp-4L expression is essential for incorporation of fibulin-4 into the extracellular matrix (ECM). Overall, our results contribute to the current understanding of elastogenesis and provide an animal model of ARCL1C.Peer reviewe

    Pre-existing chronic thromboembolic pulmonary hypertension in acute pulmonary embolism

    Full text link
    BACKGROUND Chronic thromboembolic pulmonary hypertension (CTEPH) is considered a complication of pulmonary embolism (PE). However, signs of CTEPH may exist in patients with a first symptomatic PE. RESEARCH QUESTION Which radiologic findings on computed tomography pulmonary angiography (CTPA) at the time of acute PE could indicate the presence of a pre-existing CTEPH? RESULTS We included unselected patients with acute PE who were prospectively followed for 2 years with a structured visit schedule. Two expert radiologists independently assessed patients' baseline CTPAs for pre-existing CTEPH; in case of disagreement, a decision was reached by 2:1 majority with a third expert. In addition, the radiologists checked for predefined individual parameters suggesting chronic PE and pulmonary hypertension. Signs of chronic PE or CTEPH at baseline were identified in 46 (15%) of 303 included patients. Intravascular webs, arterial narrowing or retraction, dilated bronchial arteries and right ventricular hypertrophy were the main drivers of the assessment. Five (1.7%) patients were diagnosed with CTEPH during follow-up. All four patients diagnosed with CTEPH early (83-108 days after acute PE) could be found in enriched subgroups based on the experts' overall assessment or fulfilling a minimum number of the predefined radiologic criteria at baseline. The specificity of pre-existing CTEPH diagnosis and the level of radiologists' agreement improved as the number of required criteria increased. INTERPRETATION Searching for predefined radiologic parameters suggesting pre-existing CTEPH at the time of acute PE diagnosis may allow for targeted follow-up strategies and risk-adapted CTEPH screening, thus facilitating earlier CTEPH diagnosis

    Modeling autosomal recessive cutis laxa type 1C in mice reveals distinct functions for Ltbp-4 isoforms

    Get PDF
    Recent studies have revealed an important role for LTBP-4 in elastogenesis. Its mutational inactivation in humans causes autosomal recessive cutis laxa type 1C (ARCL1C), which is a severe disorder caused by defects of the elastic fiber network. Although the human gene involved in ARCL1C has been discovered based on similar elastic fiber abnormalities exhibited by mice lacking the short Ltbp-4 isoform (Ltbp4S(-/-)), the murine phenotype does not replicate ARCL1C. We therefore inactivated both Ltbp-4 isoforms in the mouse germline to model ARCL1C. Comparative analysis of Ltbp4S(-/-) and Ltbp4-null (Ltbp4(-/-)) mice identified Ltbp-4L as an important factor for elastogenesis and postnatal survival, and showed that it has distinct tissue expression patterns and specific molecular functions. We identified fibulin-4 as a previously unknown interaction partner of both Ltbp-4 isoforms and demonstrated that at least Ltbp-4L expression is essential for incorporation of fibulin-4 into the extracellular matrix (ECM). Overall, our results contribute to the current understanding of elastogenesis and provide an animal model of ARCL1C.Peer reviewe

    Biventricular myocardial strain analysis in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) using cardiovascular magnetic resonance feature tracking

    Get PDF
    BACKGROUND: Fibrofatty degeneration of myocardium in ARVC is associated with wall motion abnormalities. The aim of this study was to examine whether Cardiovascular Magnetic Resonance (CMR) based strain analysis using feature tracking (FT) can serve as a quantifiable measure to confirm global and regional ventricular dysfunction in ARVC patients and support the early detection of ARVC. METHODS: We enrolled 20 patients with ARVC, 30 with borderline ARVC and 22 subjects with a positive family history but no clinical signs of a manifest ARVC. 10 healthy volunteers (HV) served as controls. 15 ARVC patients received genotyping for Plakophilin-2 mutation (PKP-2), of which 7 were found to be positive. Cine MR datasets of all subjects were assessed for myocardial strain using FT (TomTec Diogenes Software). Global strain and strain rate in radial, circumferential and longitudinal mode were assessed for the right and left ventricle. In addition strain analysis at a segmental level was performed for the right ventricular free wall. RESULTS: RV global longitudinal strain rates in ARVC (−0.68 ± 0.36 sec(−1)) and borderline ARVC (−0.85 ± 0.36 sec(−1)) were significantly reduced in comparison with HV (−1.38 ± 0.52 sec(−1), p ≤ 0.05). Furthermore, in ARVC patients RV global circumferential strain and strain rates at the basal level were significantly reduced compared with HV (strain: −5.1 ± 2.7 vs. -9.2 ± 3.6%; strain rate: −0.31 ± 0.13 sec(−1) vs. -0.61 ± 0.21 sec(−1)). Even for patients with ARVC or borderline ARVC and normal RV ejection fraction (n=30) global longitudinal strain rate proved to be significantly reduced compared with HV (−0.9 ± 0.3 vs. -1.4 ± 0.5 sec(−1); p < 0.005). In ARVC patients with PKP-2 mutation there was a clear trend towards a more pronounced impairment in RV global longitudinal strain rate. On ROC analysis RV global longitudinal strain rate and circumferential strain rate at the basal level proved to be the best discriminators between ARVC patients and HV (AUC: 0.9 and 0.92, respectively). CONCLUSION: CMR based strain analysis using FT is an objective and useful measure for quantification of wall motion abnormalities in ARVC. It allows differentiation between manifest or borderline ARVC and HV, even if ejection fraction is still normal
    corecore