1,170 research outputs found

    Cosmological backreaction of a quantized massless scalar field

    Full text link
    We consider the backreaction problem of a quantized minimally coupled massless scalar field in cosmology. The adiabatically regularized stress-energy tensor in a general Friedmann-Robertson-Walker background is approximately evaluated by using the fact that subhorizon modes evolve adiabatically and superhorizon modes are frozen. The vacuum energy density is verified to obey a new first order differential equation depending on a dimensionless parameter of order unity, which calibrates subhorizon/superhorizon division. We check the validity of the approximation by calculating the corresponding vacuum energy densities in fixed backgrounds, which are shown to agree with the known results in de Sitter space and space-times undergoing power law expansions. We then apply our findings to slow-roll inflationary models. Although backreaction effects are found to be negligible during the near exponential expansion, the vacuum energy density generated during this period might be important at later stages since it decreases slower than radiation or dust.Comment: 20 pages, 2 figures, v2: comments and a reference added, to appear in JCA

    The inflationary prediction for primordial non-gaussianity

    Full text link
    We extend the \delta N formalism so that it gives all of the stochastic properties of the primordial curvature perturbation \zeta if the initial field perturbations are gaussian. The calculation requires only the knowledge of some family of unperturbed universes. A formula is given for the normalisation \fnl of the bispectrum of \zeta, which is the main signal of non-gaussianity. Examples of the use of the formula are given, and its relation to cosmological perturbation theory is explained.Comment: Revtex Latex file. 4 pages, no figures. v4: minor changes, typos corrected, references added and updated. Version published in Physical Review Letter

    Inflaton Decay in an Alpha Vacuum

    Full text link
    We study the alpha vacua of de Sitter space by considering the decay rate of the inflaton field coupled to a scalar field placed in an alpha vacuum. We find an {\em alpha dependent} Bose enhancement relative to the Bunch-Davies vacuum and, surprisingly, no non-renormalizable divergences. We also consider a modified alpha dependent time ordering prescription for the Feynman propagator and show that it leads to an alpha independent result. This result suggests that it may be possible to calculate in any alpha vacuum if we employ the appropriate causality preserving prescription.Comment: 16 pages, 1 figure, Revtex 4 preprin

    Imaging analysis of LDEF craters

    Get PDF
    Two small craters in Al from the Long Duration Exposure Facility (LDEF) experiment tray A11E00F (no. 74, 119 micron diameter and no. 31, 158 micron diameter) were analyzed using Auger electron spectroscopy (AES), time-of-flight secondary ion mass spectroscopy (TOF-SIMS), low voltage scanning electron microscopy (LVSEM), and SEM energy dispersive spectroscopy (EDS). High resolution images and sensitive elemental and molecular analysis were obtained with this combined approach. The result of these analyses are presented

    Hadamard States and Adiabatic Vacua

    Full text link
    Reversing a slight detrimental effect of the mailer related to TeXabilityComment: 10pages, LaTeX (RevTeX-preprint style

    Vacuum polarization near cosmic string in RS2 brane world

    Get PDF
    Gravitational field of cosmic strings in theories with extra spatial dimensions must differ significantly from that in the Einstein's theory. This means that all gravity induced properties of cosmic strings need to be revised too. Here we consider the effect of vacuum polarization outside a straight infinitely thin cosmic string embedded in a RS2 brane world. Perturbation technique combined with the method of dimensional regularization is used to calculate vacren{}_{vac}^{ren} for a massless scalar field.Comment: 8 pages, RevTeX

    Universal Dynamic Conductivity and Quantized Visible Opacity of Suspended Graphene

    Full text link
    We show that the optical transparency of suspended graphene is defined by the fine structure constant, alpha, the parameter that describes coupling between light and relativistic electrons and is traditionally associated with quantum electrodynamics rather than condensed matter physics. Despite being only one atom thick, graphene is found to absorb a significant (pi times alpha=2.3%) fraction of incident white light, which is a consequence of graphene's unique electronic structure. This value translates into universal dynamic conductivity G =e^2/4h_bar within a few percent accuracy

    Energy Density in Expanding Universes as Seen by Unruh's Detector

    Full text link
    We consider the response of an Unruh detector to scalar fields in an expanding space-time. When combining transition elements of the scalar field Hamiltonian with the interaction operator of detector and field, one finds at second order in time-dependent perturbation theory a transition amplitude, which actually dominates in the ultraviolet over the first order contribution. In particular, the detector response faithfully reproduces the particle number implied by the stress-energy of a minimally coupled scalar field, which is inversely proportional to the energy of a scalar mode. This finding disagrees with the contention that in de Sitter space, the response of the detector drops exponentially with particle energy and therefore indicates a thermal spectrum.Comment: 15 pages, 1 figur

    Localized Particle States and Dynamics Gravitational Effects

    Full text link
    Scalar particles--i.e., scalar-field excitations--in de Sitter space exhibit behavior unlike either classical particles in expanding space or quantum particles in flat spacetime. Their energies oscillate forever, and their interactions are spread out in energy. Here it is shown that these features characterize not only normal-mode excitations spread out over all space, but localized particles or wave packets as well. Both one-particle and coherent states of a massive, minimally coupled scalar field in de Sitter space, associated with classical wave packets, are constructed explicitly. Their energy expectation values and corresponding Unruh-DeWitt detector response functions are calculated. Numerical evaluation of these quantities for a simple set of classical wave packets clearly displays these novel features. Hence, given the observed accelerating expansion of the Universe, it is possible that observation of an ultralow-mass scalar particle could yield direct confirmation of distinct predictions of quantum field theory in curved spacetime.Comment: 12 pages, 5 figure
    • …
    corecore