1,689 research outputs found

    Fluctuation effects in disordered Peierls systems

    Get PDF
    We review the density of states and related quantities of quasi one-dimensional disordered Peierls systems in which fluctuation effects of a backscattering potential play a crucial role. The low-energy behavior of non-interacting fermions which are subject to a static random backscattering potential will be described by the fluctuating gap model (FGM). Recently, the FGM has also been used to explain the pseudogap phenomenon in high-TcT_c superconductors. After an elementary introduction to the FGM in the context of commensurate and incommensurate Peierls chains, we develop a non-perturbative method which allows for a simultaneous calculation of the density of states (DOS) and the inverse localization length. First, we recover all known results in the limits of zero and infinite correlation lengths of the random potential. Then, we attack the problem of finite correlation lengths. While a complex order parameter, which describes incommensurate Peierls chains, leads to a suppression of the DOS, i.e. a pseudogap, the DOS exhibits a singularity at the Fermi energy if the order parameter is real and therefore refers to a commensurate system. We confirm these results by calculating the DOS and the inverse localization length for finite correlation lengths and Gaussian statistics of the backscattering potential with unprecedented accuracy numerically. Finally, we consider the case of classical phase fluctuations which apply to low temperatures where amplitude fluctuations are frozen out. In this physically important regime, which is also characterized by finite correlation lengths, we present analytic results for the DOS, the inverse localization length, the specific heat, and the Pauli susceptibility.Comment: 60 pages, 16 figure

    Ultra-Short Optical Pulse Generation with Single-Layer Graphene

    Full text link
    Pulses as short as 260 fs have been generated in a diode-pumped low-gain Er:Yb:glass laser by exploiting the nonlinear optical response of single-layer graphene. The application of this novel material to solid-state bulk lasers opens up a way to compact and robust lasers with ultrahigh repetition rates.Comment: 6 pages, 3 figures, to appear in Journal of Nonlinear Optical Physics & Material

    Finite-temperature scalar fields and the cosmological constant in an Einstein universe

    Get PDF
    We study the back reaction effect of massless minimally coupled scalar field at finite temperatures in the background of Einstein universe. Substituting for the vacuum expectation value of the components of the energy-momentum tensor on the RHS of the Einstein equation, we deduce a relationship between the radius of the universe and its temperature. This relationship exhibit a maximum temperature, below the Planck scale, at which the system changes its behaviour drastically. The results are compared with the case of a conformally coupled field. An investigation into the values of the cosmological constant exhibit a remarkable difference between the conformally coupled case and the minimally coupled one.Comment: 7 pages, 2 figure

    Phenomenon of the time-reversal-violating photon polarization plane rotation by a gas placed to an electric field

    Get PDF
    T-odd P-odd phenomenon of the photon polarization plane rotation (circular dichroism) is considered for an atomic (molecules) gas placed to an electric field. The expression for the T non-invariant polarizability of an atom (molecule) placed to an electric field is obtained. It is shown that the T-odd plane rotation angle increases when the interaction energy of an atom (molecule) with an electric field is the same order as the opposite parity levels spacing.Comment: 9 pages, Late

    Electron-electron interaction and charging effects in graphene quantum dots

    Full text link
    We analyze charging effects in graphene quantum dots. Using a simple model, we show that, when the Fermi level is far from the neutrality point, charging effects lead to a shift in the electrostatic potential and the dot shows standard Coulomb blockade features. Near the neutrality point, surface states are partially occupied and the Coulomb interaction leads to a strongly correlated ground state which can be approximated by either a Wigner crystal or a Laughlin like wave function. The existence of strong correlations modify the transport properties which show non equilibrium effects, similar to those predicted for tunneling into other strongly correlated systems.Comment: Extended version accepted for publication at Phys. Rev.

    Hadamard States and Adiabatic Vacua

    Full text link
    Reversing a slight detrimental effect of the mailer related to TeXabilityComment: 10pages, LaTeX (RevTeX-preprint style

    Initial basalt target site selection evaluation for the Mars penetrator drop test

    Get PDF
    Potential basalt target sites for an air drop penetrator test were described and the criteria involved in site selection were discussed. A summary of the background field geology and recommendations for optimum sites are also presented

    Energy Density in Expanding Universes as Seen by Unruh's Detector

    Full text link
    We consider the response of an Unruh detector to scalar fields in an expanding space-time. When combining transition elements of the scalar field Hamiltonian with the interaction operator of detector and field, one finds at second order in time-dependent perturbation theory a transition amplitude, which actually dominates in the ultraviolet over the first order contribution. In particular, the detector response faithfully reproduces the particle number implied by the stress-energy of a minimally coupled scalar field, which is inversely proportional to the energy of a scalar mode. This finding disagrees with the contention that in de Sitter space, the response of the detector drops exponentially with particle energy and therefore indicates a thermal spectrum.Comment: 15 pages, 1 figur

    The Introduction of a Multimodal Clinical Pathway for Outpatient Total Knee Arthroplasty in the Era of COVID-19

    Get PDF
    The combination of a short acting spinal and muscle-sparing regional blocks, including adductor canal and iPACK blocks, can allow for successful outpatient total knee arthroplasty.https://knowledgeconnection.mainehealth.org/lambrew-retreat-2021/1050/thumbnail.jp

    Electronic states and Landau levels in graphene stacks

    Full text link
    We analyze, within a minimal model that allows analytical calculations, the electronic structure and Landau levels of graphene multi-layers with different stacking orders. We find, among other results, that electrostatic effects can induce a strongly divergent density of states in bi- and tri-layers, reminiscent of one-dimensional systems. The density of states at the surface of semi-infinite stacks, on the other hand, may vanish at low energies, or show a band of surface states, depending on the stacking order
    • …
    corecore