
ar
X

iv
:c

on
d-

m
at

/0
10

21
60

v1
  [

co
nd

-m
at

.s
tr

-e
l]

  8
 F

eb
 2

00
1

Ann. Phys. (Leipzig) 1 (2001) 1, 1 – 60

Fluctuation effects in disordered Peierls systems

Lorenz Bartosch

Institut für Theoretische Physik, Universität Frankfurt, Robert-Mayer-Strasse 8-10, 60054
Frankfurt am Main, Germany
bartosch@th.physik.uni-frankfurt.de

Received dd.mm.yyyy, accepted dd.mm.yyyy by ue

Abstract. We review the density of states and related quantities of quasi one-dimensional
disordered Peierls systems in which fluctuation effects of a backscattering potential play
a crucial role. The low-energy behavior of non-interacting fermions which are subject to
a static random backscattering potential will be described by the fluctuating gap model
(FGM). Recently, the FGM has also been used to explain the pseudogap phenomenon in
high-Tc superconductors. After an elementary introduction to the FGM in the context of
commensurate and incommensurate Peierls chains, we develop a non-perturbative method
which allows for a simultaneous calculation of the density of states (DOS) and the inverse
localization length. First, we recover all known results in the limits of zero and infinite
correlation lengths of the random potential. Then, we attack the problem of finite correlation
lengths. While a complex order parameter, which describes incommensurate Peierls chains,
leads to a suppression of the DOS, i.e. a pseudogap, the DOS exhibits a singularity at the
Fermi energy if the order parameter is real and therefore refers to a commensurate system.
We confirm these results by calculating the DOS and the inverse localization length for finite
correlation lengths and Gaussian statistics of the backscattering potential with unprecedented
accuracy numerically. Finally, we consider the case of classical phase fluctuations which apply
to low temperatures where amplitude fluctuations are frozen out. In this physically important
regime, which is also characterized by finite correlation lengths, we present analytic results
for the DOS, the inverse localization length, the specific heat, and the Pauli susceptibility.

Keywords: Peierls chains, fluctuating gap model, pseudogap

PACS: 71.23.-k, 02.50.Ey, 71.10.Pm

Contents

1 Introduction 2

2 Peierls systems and the fluctuating gap model 4
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1 Introduction

As the temperature is lowered, some inorganic and organic conductors with a highly
anisotropic crystal and electronic structure become unstable and undergo a Peierls
transition, i.e. they develop a charge-density wave. This instability is due to their
quasi one-dimensional nature which results in a (perfectly) nested Fermi surface. A
qualitative understanding of the Peierls instability can already be gained by treating
the phonon field of a quasi one-dimensional electron-phonon system in a mean-field
picture [1–8]. However, because of reduced dimensionality, fluctuations of the phonon
field which can be identified as the order parameter field ∆(x) are crucial and signifi-
cant deviations are to be expected.

In a seminal paper, Lee, Rice and Anderson [9] introduced the one-dimensional
so-called fluctuating gap model (FGM), in which fluctuations of the phonon field are
modeled by a static disorder potential. Calculating the leading-order correction of the
electronic self energy of an incommensurate chain which is described by a complex
order parameter field with 〈∆(x)〉 = 0 and 〈∆(x)∆∗(x′)〉 = ∆2

s e
−|x−x′|/ξ, where ξ is

the temperature-dependent correlation length, Lee, Rice, and Anderson obtained an
approximate expression for the density of states (DOS), showing a suppression of the
DOS near the Fermi energy, which is called a pseudogap.

A few years later, Sadovskii [10] apparently obtained an exact expression for the
Green function of the FGM using Gaussian statistics for the higher correlation func-
tions of the order parameter field which he could assume to be real or complex, referring
to a band filling being commensurate or incommensurate with the underlying lattice.
Recently, the experimental observation of a pseudo-gap state in the overdoped cuprates
above the superconducting phase transition led to a reincarnation of the FGM and
Sadovskii’s exact solution in the field of high-temperature superconductivity [11–13].
However, the revived interest in Sadovskii’s solution also brought to light a subtle
error in this solution [14] which questions not only the solution itself, but also the
work based on it.
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Besides the limit ξ → ∞ where Sadovskii’s solution is indeed exact [14, 15], Sadov-
skii’s solution can also be easily tested in the white-noise limit ξ → 0, keepingD ≡ ∆2

sξ
constant, such that 〈∆(x)∆∗(x′)〉 = 2Dδ(x− x′). Solving a stationary Fokker-Planck
equation, Ovchinnikov and Erikhman [16] obtained an exact expression for the DOS
for real ∆(x). They showed that for small ω and 〈∆(x)〉 = 0, the DOS diverges
as 〈ρ(ω)〉 ∝ |ω ln3 |ω||−1. Singularities of this type at the band center of a random
Hamiltonian have been discovered by Dyson [17] in the fifties and have recently also
been found in one-dimensional spin-gap systems [18, 19]. It is important to note that
in the FGM, the singularity is a consequence of phase resonance, and is not related
to concrete probability properties of ∆(x) [20, 21]. In particular, the singularity is not
an artifact of the exactly solvable limit ξ → 0 considered in Ref. [16]. As argued in
Ref. [22], it is therefore reasonable to expect that for any ξ < ∞ the average DOS of
the FGM exhibits a singularity at ω = 0. This general argument is in disagreement
with Sadovskii’s solution [10] which for large but finite ξ shows a pseudogap and no
singularity. In this work we shall reexamine the DOS of the FGM which determines
the whole thermodynamics of the FGM and resolve the above contradictions. This
emerged from the PhD thesis of the author [23]. Some of the results presented here
have been published in a series of recent research articles [22, 24, 25].

The organisation of this article is as follows: In Section 2, we give an elementary
introduction to diordered Peierls systems whose Fermi wave vector can be commensu-
rate or incommensurate with the underlying lattice structure. Starting from a Fröhlich
Hamiltonian which describes a one-dimensional electron-phonon system, we will in-
troduce the fluctuating gap model (FGM) as a low energy model in which the phonon
system is essentially replaced by a fluctuating static backscattering potential which
will serve as the order parameter field.

Section 3 focuses on the one-particle Green function of the FGM. After calculating
the Green function in the leading-order Born approximation which reproduces the
result obtained by Lee, Rice and Anderson, we will develop a formally exact non-
perturbative expression of the Green function as a functional of the disorder potentials
based on a non-Abelian generalization of the Schwinger-ansatz. To calculate the DOS
and inverse localization length, the introduction of phase variables will turn out to be
very convenient. While one phase variable is simply related to the integrated DOS and
satisfies a non-linear equation of motion which is equivalent to a Riccati equation, the
other phase variable is related to the inverse localization length and can be expressed
in terms of the first phase variable. These equations of motions will serve as the
starting point for detailed calculations of the DOS and inverse localization length for
various probability distributions of the disorder potentials in the next sections.

In Section 4, we will review known exact results of the DOS and inverse local-
ization length in the limit of infinite correlation lengths and in the white noise limit.
Generalizing the phase formalism developed in Ref. [20] such that ∆(x) is allowed to
be complex, we will derive a linear fourth-order Fokker-Planck equation previously
only obtained within the framework of the method of supersymmetry [26]. The solu-
tion of this stationary Fokker-Planck equation encapsulates all known results for the
DOS and inverse localization length of the FGM in the white noise limit including the
above mentioned Dyson singularity in the Ovchinnikov and Erikhman limit. Results
for the case of infinite correlation lengths will finally be obtained by averaging the
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DOS and the inverse localization length calculated for a constant disorder potential
over an appropriate probability distribution of the disorder potentials.

The case of finite correlation lengths of the order parameter field will be attacked
in Section 5. Considering the equation of motion related to the integrated DOS, we
will first argue that we expect for any finite ξ a Dyson singularity in the DOS. We
will then set up an algorithm based on the equations of motion derived in Section
3 which will allow for a simultaneous numerical calculation of the DOS and inverse
localization length for arbitrary disorder potentials with unprecedented accuracy. For
complex ∆(x), Sadovskii’s solution is not too far off from our numerical solution.
In particular, for large correlation lengths ∆sξ ≫ 1, the DOS at the Fermi energy
vanishes as ρ(0) ∝ (∆sξ)

−0.64 instead of ρ(0) ∝ (∆sξ)
−1/2, as predicted by Sadovskii.

However, for real ∆, we will find a pseudogap in the DOS for ∆sξ ≫ 1 which for any
finite ξ is overshadowed by a Dyson singularity of the form ρ(ω) = A |ω lnα+1 |ω||−1,
where A and the exponent α depend on the correlation length ξ. As the correlation
length ξ increases, α assumes the finite value α = 0.41, but the weight of the Dyson
singularity vanishes with increasing correlation length. At the end of Section 5, we
shall also discuss the case of only phase fluctuations of the order parameter which
applies to sufficiently low temperatures where the amplitude of the order parameter is
confined to a narrow region around ∆s such that Gaussian statistics do not apply any
more. We will find exact analytic results for the DOS and inverse localization length
and we will also calculate the low-temperature Pauli paramagnetic susceptibility and
the electronic low-temperature specific heat.

2 Peierls systems and the fluctuating gap model

In this introductory section we will replace the dynamic phonon ensemble in Peierls
systems by a static backscattering potential which we will identitfy as the order param-
eter. Due to reduced dimensionality, fluctuations of this order parameter field are very
important and we will determine its statistics in the context of a brief discussion of
a generalized Ginzburg-Landau functional. Finally, we introduce the fluctuating gap
model (FGM) as a low-energy model which takes into account these fluctuations.

2.1 Fröhlich Hamiltonian and Peierls instability

The formation of periodic lattice distortions and charge-density waves in Peierls chains
is due to the electron-phonon interaction in these quasi one-dimensional materials [1–
3, 6–8]. Since particle-hole excitations with momentum1 2kF are possible for very
small excitation energies, the Lindhard density-density response function exhibits a
singularity at q = 2kF . Kohn showed that this singularity should be conveyed into
a kink in the phonon spectrum [27]. While these Kohn anomalies are rather weak in
isotropic materials, they can lead to a substantial alteration to the phonon dispersion
in quasi one-dimensional materials with a topology of the Fermi surface which shows
perfect nesting. At low enough temperatures, the renormalized phonon mode at 2kF
can scale all the way down to zero, i.e. become gapless. This process is called softening

1In this work we choose units such that ~= kB = 1.
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of the phonon mode. Since ωren(2kF ) → 0, a static lattice distortion with wave vector
2kF may now arise. Simultaneously, there is a formation of a charge density wave. As a
consequence, the discrete translational invariance is broken. The same physics can also
be described by considering the thermodynamics of a Peierls system. This approach
will also allow to go beyond a mean-field picture and will therefore be followed here.

A Hamiltonian to describe a one-dimensional electron-phonon system was proposed
in 1954 by Fröhlich [1]:

H =
∑

k,σ

ǫk c
†
k,σck,σ +

∑

q

ωq b
†
qbq +

∑

q

gq√
L

ˆ̺†q (bq + b†−q) . (1)

The system has length L = Na where a is the lattice spacing, and periodic boundary
conditions are assumed. c†k and ck are fermionic creation and annihilation operators
with momentum k, spin σ, and energy ǫk. While ǫk = k2/2m for free electrons, in the
tight-binding approximation one has ǫk = −2t coska. The second term in the Fröhlich
Hamiltonian (1) describes phonons with phonon dispersion ωq. b

†
q and bq are bosonic

creation and annihilation operators with momentum q which is confined to the first
Brillouin zone. For a chain with only nearest-neighbor interactions we have (see for
example Ref. [28]) ωq = 2ω0 sin |qa/2|. Finally, the last term in Eq. (1) models the
interaction of the phonon system with the fermions. The phonons are linearly coupled
via the electron-phonon coupling constant gq to the Fourier components of the electron
density

ˆ̺†q ≡
∑

k,σ

c†k+q,σck,σ . (2)

The phonon operators bq and b†q are directly related to the operators of the normal
coordinates uq of the lattice system by

uq =

(

1

2Mωq

)1/2
(

bq + b†−q

)

. (3)

Here, M is the ionic mass. The lattice displacement operators of the ions at xn = na
are given by its Fourier transform,

u(xn) =
∑

q

eiqxn

(

1

2NMωq

)1/2
(

bq + b†−q

)

. (4)

In a mean-field picture, the Peierls transition will lead to a non-vanishing expectation
value 〈u(xn)〉 which implies that the system exhibits a static lattice distortion [8, 23].
This static lattice distortion is accompanied by a single-particle gap, a charge density
wave and unusual electronic transport properties [6–8, 29, 30].

2.2 Euclidean action

In an Euclidean functional integral approach, the Fröhlich Hamiltonian is conveyed
into the action (see, for example, Negele and Orland [31])

S{ψ∗, ψ; b∗, b} = Sel{ψ∗, ψ}+ Sph{b∗, b}+ Sint{ψ∗, ψ; b∗, b} , (5)
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where

Sel{ψ∗, ψ} = β
∑

k,ω̃n,σ

ψ∗
k,ω̃n,σ [iω̃n − ǫ̃k]ψk,ω̃n,σ , (6)

Sph{b∗, b} = −β
∑

q,ωm

b∗q,ωm
[iωm − ωq] bq,ωm , (7)

Sint{ψ∗, ψ; b∗, b} = β
∑

q,ωm

gq√
L





∑

k,ω̃n,σ

ψ∗
k+q,ω̃n+ωm,σψk,ω̃n,σ





×
[

bq,ωm + b∗−q,−ωm

]

. (8)

Here, β ≡ 1/T is the inverse temperature and ǫ̃k ≡ ǫk − µ is the energy dispersion
measured with respect to the chemical potential µ. While the conjugated Grassmann
variables ψk,ω̃n and ψ∗

k,ω̃n
describe fermions with momentum k and fermionic Matsub-

ara frequency ω̃n ≡ (2n+1)π/β, bq,ωm and b∗q,ωm
are complex (bosonic) phonon fields

with momentum q and bosonic Matsubara frequency ωm ≡ 2πm/β. In terms of the
above action, the partition function reads

Z =

∫

D {ψ∗, ψ} D {b∗, b} exp [−S{ψ∗, ψ; b∗, b}] , (9)

whereD {ψ∗, ψ} andD {b∗, b} are appropriately normalized fermionic and bosonic inte-
gration measures [31]. Using the variable transformation φq,ωm ≡ gq√

L

(

bq,ωm + b∗−q,−ωm

)

,

ηq,ωm ≡ −i gq√
L

(

bq,ωm − b∗−q,−ωm

)

, such that φ∗q,ωm
= φ−q,−ωm and η∗q,ωm

= η−q,−ωm ,

η may easily be integrated out resulting in

S{ψ∗, ψ;φ} = Sel{ψ∗, ψ}+ Sph{φ}+ Sint{ψ∗, ψ;φ} , (10)

where Sel{ψ∗, ψ} is unchanged and

Sph{φ} =
1

2
βL

∑

q,ωm

1

|gq|2
φ∗q,ωm

[

ω2
m + ω2

q

ωq

]

φq,ωm , (11)

Sint{ψ∗, ψ;φ} = β
∑

q,ωm





∑

k,ω̃n

ψ∗
k+q,ω̃n+ωm

ψk,ω̃n



φq,ωm . (12)

So far, no approximation has been made. In the following, we will restrict ourselves to
the low-energy physics of the weak-coupling limit, so that only fermions in the vicinity
of the Fermi energy are involved. In this case the Fermi energy may be linearized
around the two Fermi points, such that it assumes the form

ǫ̃k = vF (|k| − kF ) . (13)

To separate right- and left-moving Fermions, let us introduce the spinor field

ψ̄k,ω̃n,σ ≡
(

ψ+,k,ω̃n,σ

ψ−,k,ω̃n,σ

)

≡
(

ψkF+k,ω̃n,σ

ψ−kF+k,ω̃n,σ

)

(14)
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and its conjugated counterpart

ψ̄†
k,ω̃n,σ

≡
(

ψ∗
+,k,ω̃n,σ , ψ

∗
−,k,ω̃n,σ

)

≡
(

ψ∗
kF+k,ω̃n,σ , ψ

∗
−kF+k,ω̃n,σ

)

. (15)

The electronic part of the action may easily be rewritten in terms of these spinor fields
and the inverse non-interacting Matsubara Green function

G−1
0 (k, ω̃n) ≡

(

iω̃n − vFk 0
0 iω̃n + vFk

)

. (16)

Since the momentum transfer of the phonons is either small compared with the Fermi
momentum or approximately 2kF , we decompose φq,ωm according to

Vq,ωm ≡
(

Vq,ωm ∆q,ωm

∆∗
−q,−ωm

Vq,ωm

)

≡
(

φq,ωm φq+2kF ,ωm

φq−2kF ,ωm φq,ωm

)

, (17)

such that |q| < kF . While φ∗q,ωm
= φ−q,−ωm directly translates into V ∗

q,ωm
= V−q,−ωm ,

a similar relation for ∆q,ωm does only hold if 4kF is a reciprocal lattice vector. ∆∗
q,ωm

=
∆−q,−ωm is therefore only true for a half-filled band for which π/a = 2kF . We will
refer to this case as the commensurate case. The more general case for which kFa/π
is an other fractional number is also called commensurate but will not be discussed
here. In the incommensurate case, for which kF a/π is well separated from any simple
fractional number, all ∆∗

q,ωm
and ∆−q′,−ωm′

are independent. We will see in this
work that commensurate and incommensurate Peierls systems can have very different
physical properties.

Defining the matrices G−1
0 and V via

(

G−1
0

)

k,k′,ω̃n,ω̃n′

≡ δk,k′ δω̃n,ω̃n′
G−1

0 (k, ω̃n) , (18)

(V)k,k′,ω̃n,ω̃n′
≡ Vk−k′,ω̃n−ω̃n′

, (19)

our action turns into

S{ψ̄†, ψ̄;V,∆,∆∗} = Sel−ph{ψ̄†, ψ̄;V,∆,∆∗}+ Sph{V,∆,∆∗} , (20)

where

Sel−ph{ψ̄†, ψ̄;V,∆,∆∗} = β
∑

k,k′,ω̃n,ω̃n′ ,σ

ψ̄†
k,ω̃n,σ

(

G−1
0 −V

)

k,k′,ω̃n,ω̃n′

ψ̄k′,ω̃n′ ,σ , (21)

Sph{V,∆,∆∗} =
1

2
βL

∑

q,ωm

1

|gq|2

[

ω2
m + ω2

q

ωq

]

V ∗
q,ωm

Vq,ωm

+
1

c
βL

∑

q,ωm

1

|g2kF+q|2

[

ω2
m + ω2

2kF+q

ω2kF+q

]

∆∗
q,ωm

∆q,ωm , (22)

and

c ≡
{

2 , commensurate case (half-filled band) ,
1 , incommensurate case .

(23)

While in the incommensurate case ±2kF lie (up to a reciprocal lattice vector) inside
the first Brillouin zone, ±2kF lie directly on the border of the first Brillouin zone in
the commensurate case. In this case the factor of 1/2 in the last line in Eq. (22) avoids
overcounting.
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2.3 Generalized Ginzburg-Landau functional

Since the action S{ψ̄†, ψ̄;V,∆,∆∗} is only Gaussian in both the Fermion and the
phonon fields, either of them can easily be integrated out. To derive a time-independent
(generalized) Ginzburg-Landau theory which will enable us to determine the statistics
of the phonon field, we ignore quantum fluctuations, i.e. we ignore all terms involving
finite bosonic frequencies. Because we will be only interested in static properties of the
Peierls system, this should be a reasonable approximation for not too small tempera-
tures. Integrating out the fermionic degrees of freedom, the action S{ψ̄†, ψ̄;V,∆,∆∗}
turns into the free energy functional βF{V,∆,∆∗}.

For the derivation of a generalized Ginzburg-Landau functional in which the free
energy functional is expressed in terms of gradients of the order parameter field

∆(x) =
∑

q

eiqx∆q , (24)

we refer the reader to the PhD thesis of the author [23] or to Refs. [32–38] where the
gradient-expansion is developed in the context of superconductivity. Up to terms of
second order in the gradient, we find

F{∆,∆∗} = F (0){∆,∆∗}+ F (2){∆,∆∗} , (25)

F (0){∆,∆∗} = sρ0

∫ L

0

dx



−2π

β

∑

0<ω̃n.ǫ0

[

√

ω̃2
n + |∆|2 − ω̃n

]

+
|∆|2
2λ



 , (26)

F (2){∆,∆∗} = sρ0

∫ L

0

dx
2π

β

∑

ω̃n>0

[

1

8

|∂x∆|2

(ω̃2
n + |∆|2) 3

2

− 1

32

[

∂x|∆|2
]2

(ω̃2
n + |∆|2) 5

2

]

. (27)

For F (0){∆,∆∗} to be finite and to avoid logarithmic divergences, the sum in Eq. (26)
needs to be regularized by an ultraviolet cutoff ǫ0.Although the ultraviolet cutoff ǫ0
was introduced here in the sum over Matsubara frequencies instead of as a cutoff in
the momentum integral, expanding Eqs. (26) and (27) in the regime β|∆| ≪ 1, we get
the usual Ginzburg-Landau functional,

F{∆,∆∗} =
sρ0
2

∫ L

0

dx
[

a(T ) |∆(x)|2 + b(T ) |∆(x)|4 + c(T ) |∂x∆(x)|2
]

, (28)

where the coefficients a(T ), b(T ) and c(T ) are given by

a(T ) = ln
T

TMF
c

, TMF
c = 1.134 ǫ0 exp (−1/λ) , (29)

b(T ) =

(

1

4πT

)2

7ζ(3) , (30)

c(T ) =
( vF
4πT

)2

7ζ(3) . (31)

Here, ζ(3) ≈ 1.2 is the Riemann zeta-function of 3 and

λ ≡ c s

2

ρ0|g2kF |2
ω2kF

(32)
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is the dimensionless coupling constant. TMF
c is the critical mean-field temperature for

the Peierls distortion. If we include spin, s = 2, otherwise we have s = 1.

2.4 Breakdown of the mean-field picture

The experimentally observed Peierls transition, including the static lattice distortion,
the charge-density wave and the occurrence of a single-particle gap can qualitatively
already be understood in a mean-field picture. However, due to reduced dimension-
ality, fluctuations of the order parameter field are very important and dramatically
change this scenario. The Mermin-Wagner theorem states that these fluctuations lead
to the absence of long-range order, even at very low temperatures [39]. This pre-
cludes a spontaneously broken continuous symmetry. But how can one explain the
experimentally observed charge-density wave which breaks a continuous translational
symmetry in strongly anisotropic materials like blue bronze [8]? The answer is simply
this: These materials are quasi one-dimensional, but not strictly one-dimensional. As
we will see below, in a strictly one-dimensional material, the correlation length ξ(T ) in-
creases with decreasing temperature, but for any finite temperature cannot approach
infinity. At very low temperatures, however, even a very weak interchain-coupling
can lead to the onset of three-dimensional order such that the system can undergo a
Peierls transition. Of course, the transition temperature is not the mean-field transi-
tion temperature TMF

c . Lee, Rice and Anderson [9] pointed out that one should expect
T 3D
c ≈ 1

4T
MF
c . For a derivation of an adequate three-dimensional microscopic theory

see McKenzie [40] and references given therein. Here, we will especially be interested
in the temperature regime above the Peierls transition so that it suffices to consider
only the strictly one-dimensional case.

2.4.1 Correlation functions of the order parameter field

We will now consider the fluctuations of the order parameter field ∆(x) and calculate
the correlation functions of ∆(x) which describe the phonon statistics.

Gaussian approximation

At temperatures far above the mean-field critical temperature TMF
c , the coefficient

a(T ) becomes large enough such that anharmonic corrections to the free energy func-
tional may be neglected. Truncating the free energy functional (28) at the second
order, we find

〈∆(x)〉 = 0 ,

〈∆(x)∆∗(x′)〉 = ∆2
s(T ) e

−|x−x′|/ξ(T ) ,
(33)

(34)

where ∆2
s(T ) =

T

sρ0

√
a(T ) c(T )

and ξ−1(T ) =
(

a(T )
c(T )

)1/2

. While 〈∆(x)∆(x′)〉 vanishes

for complex ∆, it is equal to 〈∆(x)∆∗(x′)〉 for real ∆. In the considered Gaussian
approximation, higher correlation functions are simply given by Wick’s theorem. The
Gaussian approximation is good at sufficiently high temperatures and is the usual
approximation made when higher correlation functions are too complicated or not
known.
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Anharmonic corrections and the case of only phase fluctuations

As the temperature is lowered and approaches the mean-field critical temperature
TMF
c , fluctuation effects become important and the mean-field picture breaks down.

However, as shown by Scalapino, Sears and Ferrel [41] using the transfer matrix tech-
nique, the first two moments of a one-dimensional Ginzburg-Landau theory are still
approximately given by Eqs. (33) and (34). For temperatures well below TMF

c , one
finds for real ∆(x) an exponential increase of the correlation length with decreasing
temperature, while for complex ∆(x) the correlation length increases as the inverse
temperature. This last result can be understood as follows: For small temperatures
T ≪ TMF

c , the generalized Ginzburg-Landau functional has the shape of a “Mexican
hat” and is dominated by its minima. Amplitude fluctuations get gradually frozen out
and, for complex ∆(x), the phase of the order parameter ∆(x) ≈ ∆se

iϑ(x) fluctuates
at the bottom of the “Mexican hat”. Ignoring, as before, quartic terms in the gradient
expansion of the free energy, the free energy is given up to an irrelevant constant by

F (phase){V } = F (phase){∂xϑ/2} =
1

2
sρs(T )

∫ L

0

dxV 2(x) . (35)

In analogy to the theory of superconductivity,

V (x) = ∂xϑ(x)/2 (36)

can be interpreted (up to a constant 1/m∗) as the superfluid velocity and

ρs(T ) = ρ0
2π

β

∑

ω̃n>0

∆2
s

(ω̃2
n + |∆s|2)

3
2

(37)

can be interpreted as the superfluid density. Formally, the free energy is identical to
the kinetic energy of a superflow. A two-dimensional analogue of Eq. (35) has been
used by Emery and Kivelson [42, 43] in their theory describing superconductors with
a small phase-stiffness. At T = 0, the sum in Eq. (37) turns into an integral which
can be done analytically and gives ρs(0) = ρ0, i.e. at T = 0, the superfluid density is
equal to the density of states. Plots of ρs(T ) for ∆s(T ) given by the BCS gap equation
[23, 44–46]

1

λ
=

2π

β

∑

0<ω̃n.ǫ0

1
√

ω̃2
n +∆2

0(T )
, (38)

and for ∆s = 1.76TMF
c are shown in Fig. 1.

Since F (phase){V } is only quadratic in V (x), correlation functions of ∆(x) can
easily be calculated. The first two moments are given by Eqs. (33) and (34), where

ξ(T ) =
sρs(T )

2T
. (39)

For T . TMF
c /4 we have ρs(T ) ≈ ρs(0) = 1/π, such that in this strictly one-

dimensional theory we find ξ(T ) = s/2πT ∝ 1/T which for fermions with spin 1/2
agrees with Grüner’s [8] result ξ(T ) = 1/πT .
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Fig. 1 Plot of the superfluid
density as a function of temper-
ature for ∆s = 1.76TMF

c (dashed
line) and ∆s(T ) given by the
BCS gap equation (38) (solid
line).

2.5 The Hamiltonian of the fluctuating gap model

The fluctuating gap model (FGM) describes electrons subject to a static disorder po-
tential which can be seen as an approximation of a phonon field. For a particular
realization of the disorder, the electronic part of the action given in Eq. (21) corre-
sponds to the Hamiltonian

H =
∑

k,k′

(

c†+,k , c
†
−,k

)

Hk,k′

(

c+,k′

c−,k′

)

, (40)

where

Hk,k′ =

(

vF k δk,k′ + Vk−k′ ∆k−k′

∆∗
−(k−k′) −vFk δk,k′ + Vk−k′

)

. (41)

A Fourier transformation leads to

H =

∫ L

0

dx
(

ψ†
+(x) , ψ

†
−(x)

)

Ĥ(x,−i∂x)
(

ψ+(x)

ψ−(x)

)

, (42)

with

Ĥ(x,−i∂x) = −ivF∂xσ3 + V (x)σ0 +∆(x)σ+ +∆∗(x)σ− . (43)

This is the Hamiltonian of the FGM. σi are the usual Pauli matrices, σ0 is the 2×2 unit
matrix, and σ± = 1

2 (σ1 ± iσ2). Recall that we have linearized the energy dispersion
such that the FGM can only describe the low-energy physics of Peierls chains in the
weak-coupling regime. As a further approximation, we have considered the phonon
field to be static. It will now be our aim to calculate disorder-averaged quantities for
the model described by this Hamiltonian. As we will discuss in Section 5, instead of
averaging over the disorder, it is also possible to consider a typical realization of the
disorder potential.

2.5.1 The fluctuating gap model in other physical contexts

In this section, the fluctuating gap model (FGM) emerged as an effective low-energy
model to describe quasi one-dimensional materials which undergo a Peierls transition.
Our strictly one-dimensional theory applies to temperatures above the Peierls tran-
sition before three-dimensional fluctuations become important and eventually lead to
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a phase transition. Formally, the Hamiltonian of the FGM is of the Dirac type and
describes electrons in a disordered potential. In the language of relativistic quan-
tum field theory, the backscattering potential can be interpreted as a random (and
complex) mass. The FGM has also applications in other fields of physics. As shown
in Refs. [18, 47], the Hamiltonian of disordered spin Peierls systems [8, 19, 48–50] can
be mapped by a Jordan-Wigner transformation onto the Hamiltonian of the FGM.
In a semiclassical approximation of superconductivity, it is also possible to replace
the original three-dimensional problem by a directional average over effectively one-
dimensional problems [51] which in the weak coupling limit are described by the FGM.
This method has been used in Refs. [36–38] to derive the gradient expansion of a clean
superconductor. A generalization of the FGM towards higher dimensions to describe
the phase above the phase-transition in underdoped high-Tc superconductors by anti-
ferromagnetic short-range order fluctuations was considered in Refs. [11–13].

3 The Green function of the fluctuating gap model and related quantities

In this section, we will introduce different concepts to calculate the Green function and
related quantities of the fluctuating gap model. The density of states and the localiza-
tion length will be of special interest. In particular, we will develop a non-perturbative
method which allows to calculate these quantities simultaneously for arbitrary given
disorder potentials.

3.1 The retarded Green function

In the following, we are going to consider the retarded Green function GR(x, x′;ω) of
the fluctuating gap model. This retarded Green function is of special interest because
it can be related to several quantities which are in principle experimentally accessible.
The trace of the imaginary part of the Green function at coinciding space points
determines the local density of states (DOS),

ρ(x, ω) = −π−1ImTr[GR(x, x;ω)] . (44)

Averaging ρ(x, ω) over all space points gives the DOS ρ(ω), which is the fundamental
quantity that determines the whole thermodynamics of the FGM. It will turn out that
the trace of the energy-integrated space averaged Green function at coinciding space
points Γ(ω) will be easier to calculate than its non-integrated form. While its imag-
inary part is proportional to the integrated DOS N (ω), the Thouless formula states
that ReΓ(ω) is equal to the inverse localization length ℓ−1(ω). As in the following
sections, we will usually only consider the DOS and the inverse localization length for
positive frequencies ω. Due to particle-hole symmetry, the DOS and the localization
length are symmetric with respect to the Fermi energy so that after setting the Fermi
energy equal to zero we have ρ(ω) = ρ(−ω) and ℓ−1(ω) = ℓ−1(−ω). It therefore
suffices to consider the case ω > 0.

The retarded 2× 2 matrix Green function GR(x, x′;ω) to the Schrödinger operator
ω − Ĥ satisfies the differential equation

[ω + i0+ − Ĥ(x,−i∂x)] GR(x, x′;ω) = δ(x − x′)σ0 . (45)
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The positive but infinitesimal imaginary part added to the frequency ω indicates that
we have to impose the correct boundary conditions applying to a retarded Green
function.

3.1.1 Free fermions

It is easy to calculate the Green function for free fermions. In this case, V (x) =
∆(x) = 0, such that the system is translational invariant, and Eq. (45) simplifies to2

[ω + i0+ + iσ3∂x] GR
0 (x− x′;ω) = σ0δ(x− x′) . (46)

Taking the Fourier transform of this equation from real space to momentum space
gives

[ω + i0+ − kσ3] GR
0 (k;ω) = σ0 . (47)

GR
0 (k;ω) ≡

∫

dx e−ikxGR
0 (x;ω) can now be found by a simple matrix inversion. If

α = 1 accounts for right- and α = −1 for left-moving fermions, the matrix elements
of GR

0 (k;ω) are given by

(

GR
0

)

αα′
(k;ω) =

δα,α′

ω − αk + i0+
. (48)

A simple Fourier transformation back to real space now gives the retarded propagator
of free fermions in real space,

i
(

GR
0

)

αα′
(x;ω) = δα,α′θ(αx)eiαωx . (49)

Here, θ(x) is the Heaviside step function

θ(x) =

{

0 , x < 0
1 , x > 0

. (50)

For concreteness, let us also define θ(0) = limx→0[θ(x) + θ(−x)]/2 = 1/2. While the
matrix elements at x = 0 are sensitive to the definition θ(0) = 1/2 which amounts to
defining GR(x = 0;ω) ≡ 1

2 limx→0+
[

GR(+x;ω) + GR(−x;ω)
]

, the local DOS ρ(x, ω) =
−π−1ImTr[GR

0 (0;ω)] does not depend on this definition because it only involves the
harmless quantity θ(x) + θ(−x) ≡ 1. Due to translational symmetry, the total DOS is
equal to the space-independent local DOS,

ρ0(ω) = π−1 . (51)

Note that the DOS of free fermions is independent of the frequency because we have
linearized the energy dispersion.

A further Fourier transformation of Eq. (49) from frequency to time gives

i
(

GR
0

)

αα′
(x; t) = δα,α′θ(t)δ(αx − t) . (52)

This free retarded Green function in space and time allows for a simple interpretation:
A fermion put into the system at t′ = 0 as a right- or left-mover will at time t > 0 have
traveled a distance |x| = t = vF t in the positive or negative direction, respectively.
The fermion can not be observed in the system at times t < 0.

2Besides ~ and kB , we also set the Fermi velcity vF equal to one.
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Fig. 2 Diagrammatic expansion of the matrix Green function. While the single line repre-
sents the Green function of free fermions, the double line is a graphical representation of the
full Green function GR(x, x′;ω). The crosses denote the disorder potential V(x).

3.2 Dyson equation and perturbation theory

One way to handle the disorder is to consider the disorder potential as a perturbation
and expand the Green function in powers of this potential. Defining V(x) ≡ V (x)σ0+
∆(x)σ+ +∆∗(x)σ−, Eq. (45) may be written as

[iσ3∂x + ω + i0+] GR(x, x′;ω) = δ(x− x′) σ0 +V(x) GR(x, x′;ω) . (53)

Substituting x by x1, multiplying the resulting equation from the left with the free
Green function GR

0 (x− x1;ω) and then integrating over x1 gives the Dyson equation

GR(x, x′;ω) = GR
0 (x− x′;ω) +

∫

dx GR
0 (x− x1;ω) V(x1) GR(x1, x

′;ω) . (54)

Iterating this Dyson equation, the exact Green function can be expressed in terms of
the free Green function and the disorder potential:

GR(x, x′;ω) =
∞
∑

n=0

GR
n (x, x′;ω) , (55)

where GR
0 (x, x′;ω) = GR

0 (x − x′;ω) is the free Green function calculated above, and
for n ≥ 1 the functions GR

n (x, x′;ω) are given by

GR
n (x, x′;ω) =

∫

dx1 . . .

∫

dxn

GR
0 (x− xn;ω) V(xn) GR

0 (xn − xn−1;ω) . . . V(x1) GR
0 (x1 − x′;ω) . (56)

Recall that the right-hand side of this equation involves the product of 2× 2-matrices.
The perturbative expansion of the full Green function can be visualized by using
Feynman diagrams (see Fig. 2).

The physical interpretation of the perturbation expansion is simple: The pertur-
bative expansion takes into account all possibilities of a particle moving through the
sample getting scattered at the various static impurities. While ∆(x) changes the
direction in which the particle travels and therefore can be interpreted as a backscat-
tering potential, V (x) does not change the direction of the particle, so that it only
leads to forward scattering.
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Fig. 3 Diagrammatic representation of the averaged matrix Green function. The single line
represents the Green function of free fermions and in this case the (averaged) double line is
a graphical representation of the full (averaged) Green function 〈GR(x, x′;ω)〉. The dashed
line denotes the disorder average 〈V(x)V(x′)〉.

3.2.1 Boundary conditions of the retarded Green function

Below, we will consider a non-perturbative approach to calculate the Green function of
the FGM. The above perturbative expansion can be used to obtain the correct bound-
ary conditions of the full retarded Green function: Let us consider

(

GR
n

)

αα′
(x, x′;ω).

According to Eq. (56), its expansion in a product of free Green functions and the
static impurities starts with

(

GR
0

)

αα
(x − xn;ω) and ends with

(

GR
0

)

α′α′
(x1 − x′;ω).

These terms are proportional to θ(α(x− xn)) and θ(α
′(x1 − x′)), respectively, so that

(

GR
n

)

αα′
(x, x′;ω) has to vanish as αx → −∞ or α′x′ → ∞. Since this reasoning

applies to all orders in perturbation theory, it also applies to the full Green function.
If we demand the potentials to vanish outside the interval [−Λ, L+ Λ], the boundary
condition can also be written as

(

GR
)

αα′
(−αΛ, x′;ω) = 0 ,

(

GR
)

αα′
(x, α′(L+ Λ);ω) = 0 . (57)

3.2.2 Second order Born approximation

Let us now consider the disorder-averaged Green function. As discussed in Section
2, above the Peierls transition, the first two moments of the order parameter field
∆(x) are given by 〈∆(x)〉 = 0 and 〈∆(x)∆∗(x′)〉 = ∆2

se
−|x−x′|/ξ. Following Lee, Rice

and Anderson [9], we ignore the forward scattering disorder, i.e. set V (x) ≡ 0. For a
perturbative approach we assume Gaussian statistics for the higher moments of the
order parameter field such that these moments can be separated according to Wick’s
theorem. A diagrammatic representation of the averaged Green function is shown in
Fig. 3. An infinite number of diagrams can be summed up by introducing irreducible
diagrams which by definition cannot be separated into two disconnected diagrams by
cutting a single propagator. The corresponding amputated diagram is obtained by
eliminating all outer propagators. The sum of all amputated irreducible diagrams is
known as the self-energy and is diagrammatically presented in Fig. 4. In terms of the
self-energy, the averaged Green function reads in momentum space

〈

GR(k;ω)
〉

=
[

(

GR
0 (k;ω)

)−1 − Σ(k;ω)
]−1

. (58)

The simplest approximation to take into account fluctuation effects of the order pa-
rameter is to consider only the first diagram in Fig. 4. This approximation is known
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as the second order Born approximation and is essentially the approximation made
by Lee, Rice and Anderson in their seminal paper [9] in which fluctuations of the
order parameter of the FGM were taken into account for the first time. A special
non-Gaussian probability distribution of ∆(x) involving only phase fluctuations for
which the second order Born approximation turns out to be exact is presented in Ref.
[52].

3.2.3 The self-energy

Since 〈V(x)〉 = 0, the self-energy in the second order Born approximation is given by

ΣB(x − x′;ω) = 〈V(x)GR
0 (x − x′;ω)V(x′)〉 . (59)

Placing Eq. (49) into this equation, we get

(ΣB)αα′ (x− x′;ω) = δα,α′ ∆2
s e

−|x−x′|/ξ (GR
0

)

ᾱ,ᾱ
(x− x′;ω) .

= −iδα,α′ ∆2
s θ(−α(x − x′))e−iα[ω+i/ξ](x−x′) . (60)

As one should expect, the process of averaging restored translational invariance. Tak-
ing the Fourier transform of Eq. (60), we arrive at

(ΣB)αα′ (k;ω) =

∫

dx e−ikx (ΣB)αα′ (x;ω) = δα,α′

∆2
s

ω + αk + i/ξ
. (61)

Within the second order Born approximation, we therefore find for the one-particle
Green function

(

GR
B

)

α,α′
(k;ω) =

δα,α′

ω − αk − ∆2
s

ω+αk+i/ξ

. (62)

This result was first obtained by Lee, Rice and Anderson [9].

3.2.4 The density of states and the inverse localization length

Integrating Eq. (62) over k and taking the trace, we obtain

TrGR
B(x, x;ω) = −i ω + i/2ξ

√

(ω + i/2ξ)2 −∆2
s

, (63)

PSfrag replacements

Σ

Fig. 4 Diagrammatic representation of the (irreducible) self-energy. As in the above Figure
3, the single line represents the Green function of free fermions and the dashed line denotes
the disorder average 〈V(x)V(x′)〉.
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0.2, 0.5, 1.0, 2.0, 10.0, and ∞ (mean-field result) in the second order Born approximation.

where
√
z is defined as the principal part of the square root with the cut chosen along

the negative real axis. The imaginary part of Eq. (63) gives the (averaged) DOS,

ρB(ω) = ρ0 Re
ω + i/2ξ

√

(ω + i/2ξ)2 −∆2
s

. (64)

As we will show in Subsection 3.5, the real part of the Green function is equal to
the derivative of the inverse localization length ℓ−1(ω). Integrating this equation with
respect to ω and setting the integration constant at infinity equal to zero, we obtain

ℓ−1
B (ω) = Im

√

(ω + i/2ξ)2 −∆2
s − 1/2ξ . (65)

A plot of both ρB(ω) and ℓ−1
B (ω) is shown for different values of the dimensionless

parameter ∆sξ in Fig. 5. With increasing correlation length ξ, the DOS gets more
and more suppressed for ω . ∆s. However, instead of a real gap the fluctuations can
only create a pseudogap. At ω = 0, the DOS is given by

ρB(0) = ρ0
1

√

1 + (2∆sξ)2
, (66)

such that for ∆sξ ≫ 1, the DOS vanishes as

ρB(0) ∼
ρ0

2∆sξ
∝ 1

∆sξ
. (67)

As the correlation length approaches infinity, the DOS assumes the mean-field result

ρMF(ω) = ρ0
|ω|

√

ω2 −∆2
0

θ
(

ω2 −∆2
0

)

, (68)

At zero frequency, the inverse localization length is given by

ℓ−1
B (0) = ∆s

[
√

1 + (1/2∆sξ)
2 − 1/2∆sξ

]

. (69)
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3.2.5 The spectral function

Another interesting quantity related to the single-particle Green function is the spec-
tral function

ρ(αkF + k;ω) = − 1

π
Im
(

GR(k;ω)
)

α,α
. (70)

Experimentally, the spectral function can be measured by angular resolved photoemis-
sion spectroscopy (ARPES). It follows from Eq. (62) that in the Born approximation,
the spectral function is given by

ρB(αkF + k;ω) = ρ0
∆2

sξ

(∆2
s − (ω2 − k2))2 ξ2 + (ω − αk)2

. (71)

Plots of the spectral function ρB(αkF ;ω) and ρB(αkF + k;ω) with k = 0.5∆s as func-
tions of ω are shown for different values of ∆sξ in Figs 6. While for small correlation
lengths, i.e. ∆sξ ≪ 1 the spectral function exhibits a maximum near ω = αk, for large
correlation lengths we find two maxima near ω = ±

√

∆2
s + k2, the closest one to αk

having the larger weight.

Corrections to the second order Born approximation and Sadovskii’s solution

An attempt to sum up all diagrams in the perturbative expansion of the averaged
Green function was made by Sadovskii in the late seventies [10]. The first diagram
in Fig. 4 which represents the contribution given by Eq. (61) can be calculated by
attributing a factor of ∆2

s to the phonon line and a factor
(

GR
0

)

ᾱᾱ
(k;ω + i/ξ) to the

fermion line. Sadovskii conjectured that all other non-vanishing diagrams could be
calculated using a similar recipe. (In the general case, the imaginary part added to
ω has to be multiplied by the number of phonon lines above a given fermion line.)
This recipe enabled Sadovskii to give a continued fraction representation of the self-
energy (or Green function). Sadovskii’s solution was known as the only available
exact solution of the pseudo-gap state (see Ref. [14]) and was therefore also used
by other authors [11, 12, 53]. However, only recently, Tchernyshyov [14] discovered
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an unfortunate error in Sadovskii’s solution which also turned the work based on it
into question. As pointed out by Tchernyshyov, Sadovskii’s conjecture already breaks
down for terms contributing to the next to leading order in the self-energy. While
Sadovskii neglects the second term in Fig. 4, which is correct for the incommensurate
case, the last term in this figure already gives a different contribution than conjectured
by Sadovskii. Instead of trying to correctly sum up all diagrams in the perturbative
expansion of the Green function we will now develop a method which will allow for a
non-perturbative calculation of the Green function.

3.3 Non-Abelian Schwinger-ansatz

We base our non-perturbative approach to calculate the Green function of the FGM on
a matrix generalization of the Schwinger-ansatz [54]. To make the differential operator
−i∂x proportional to the unit matrix, we first factor out a Pauli matrix σ3, so that
the retarded Green function

G̃R(x, x′;ω) = σ3GR(x, x′;ω) (72)

satisfies

[i∂x −M(x, ω + i0+)]G̃R(x, x′;ω) = δ(x− x′)σ0 , (73)

where

M(x, ω) = [V (x)− ω +∆(x)σ+ +∆∗(x)σ−]σ3 (74)

is a traceless matrix. We now try to solve Eq. (73) by making the ansatz

G̃R(x, x′, ω) = U(x, ω) G̃R
0 (x− x′)U−1(x′, ω) , (75)

where U(x, ω) is an invertible 2 × 2 matrix and G̃R
0 (x) is the Green function to the

operator i∂x + i0+σ3, i.e.

G̃R
0 (x) = −i

(

θ(x) 0
0 −θ(−x)

)

. (76)

The ansatz (75) resembles the transformation law for the comparator in non-Abelian
Gauge theory (see, for example, the book on quantum field theory by Peskin and
Schröder [55]), and since it is also similar to the scalar Schwinger-ansatz [54] which is
sometimes used in functional bosonization of interacting fermions [56], we will refer to
it as the non-Abelian Schwinger-ansatz [22, 24, 38]. But note that in contrast to earlier
formulations of the non-Abelian Schwinger-ansatz [22, 38], we use the zero-frequency
free retarded Green function, such that the whole ω dependence is included in U(x, ω).

In the following we are going to suppress the parameter ω. The ansatz (75) indeed
solves Eq. (73) if U(x) satisfies

[i∂x −M(x)]U(x) = 0 . (77)

To establish our formalism, let us first restrict the disorder potentials to the interval
(−Λ, L+Λ). While the potentials are assumed to be constant in the intervals (−Λ, 0)
and (L,L+Λ), they are allowed to fluctuate in between. Later we can let Λ → ∞ (or



20 Ann. Phys. (Leipzig) 1 (2001) 1

we will set Λ = 0 and let L → ∞). The boundary conditions for the retarded Green
function given in Eq. (57) now renders into3

U12(−Λ) = U21(L+ Λ) = 0 . (78)

Two different solutions of Eq. (77) are given by

U+(x) = T exp

[

−i
∫ x

−Λ

M(y)dy

]

, (79)

U−(x) = T−1exp

[

i

∫ L+Λ

x

M(y)dy

]

, (80)

where T exp is the path-ordered and T−1exp is the anti-path-ordered exponential func-
tion. Both, U+(x) and U−(x) can be expressed in terms of the S-matrix,

S(x, x′) = T exp

[

−i
∫ x

x′

M(y)dy

]

. (81)

By definition, U+(x) = S(x,−Λ) and U−(x) = S−1(L+ Λ, x). Because M † = σ3Mσ3
and TrM = 0, the S-matrices satisfy S† = σ3S

−1σ3 and detS = 1, which means
that they belong to the non-compact group SU(1, 1). It follows that the elements of
S satisfy S22 = S∗

11, S21 = S∗
12, and |S11|2 − |S12|2 = 1. While each Uα(x) only obeys

one of the two conditions (78), the combination

U(x) ≡ 1√
u

(

U−11(x) U+12(x)
U−21(x) U+22(x)

)

(82)

satisfies both boundary conditions. Here, u = S22(L+Λ,−Λ) = U−11(−Λ) = U+22(L+
Λ), so that detU(x) = 1. Defining4

uα ≡ (Uα11,−Uα21)
T , vα ≡ (−Uα12, Uα22)

T , (83)

(such that vα = σ1u
∗
α), we obtain from Eqs. (72), (75) and (82)

iGR(x, x′;ω) = θ(x− x′)
u−(x)u

†
+(x

′)

u
+ θ(x′ − x)

v+(x)v
†
−(x

′)

u
. (84)

u
†
+ and v

†
− are the adjungated row vectors to the column vectors u+ and v−, so

that u−u
†
+ and v+v

†
− are 2 × 2-matrices. Note that Eq. (84) involves only U+12,

U+22, U
∗
−12 and U∗

−22, but not its complex conjugates. In principle, Eq. (84) allows to
determine the full Green function of the FGM by evaluating time-ordered exponential
functions. Equivalent but more complicated forms of this equation were first derived

3In this work we will identify matrix elements as Uij with Uαα′ , where i, j = 1, 2 corresponds to
α,α′ = +,−, e.g. U12 ≡ U+−.

4Note, that this definition deviates from the definition used in Ref. [24]. Here, the vectors uα and
vα are given by the first and second column of the matrix Uα multiplied from the left by ±σ3.
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by Abrikosov and Ryzhkin [57]. Of special interest will be the trace of the Green
function at coinciding space points,

Tr[iGR(x, x;ω)] =
U+22(x)U

∗
−22(x) + U+12(x)U

∗
−12(x)

U+22(x)U∗
−22(x)− U+12(x)U∗

−12(x)
. (85)

It immediately follows from Eq. (44) that the local DOS is given by

ρ(x, ω) =
1

π
Re

(

U+22(x)U
∗
−22(x) + U+12(x)U

∗
−12(x)

U+22(x)U∗
−22(x) − U+12(x)U∗

−12(x)

)

. (86)

3.3.1 Riccati equation

Since Eq. (86) only depends on the ratios5

Φα(x) ≡ Uα12(x)/Uα22(x) , (87)

we may also write the DOS as

ρ(x, ω) =
1

π
Re

(

1 + Φ+(x)Φ
∗
−(x)

1− Φ+(x)Φ∗
−(x)

)

. (88)

More generally, it follows from Eq. (84) that the whole matrix Green function at
coinciding space points can be written in terms of Φ+(x) and Φ∗

−(x):

iGR(x, x;ω) ≡ i

2

[

GR(x+ 0+, x;ω) + GR(x, x + 0+;ω)
]

=
1

1− Φ+(x)Φ∗
−(x)

(

1
2

(

1 + Φ+(x)Φ
∗
−(x)

)

−Φ+(x)
−Φ∗

−(x)
1
2

(

1 + Φ+(x)Φ
∗
−(x)

)

)

. (89)

Using Eq. (77), we find that the Φα(x) are both solutions of the same Riccati equation,

− i∂xΦα(x) = 2ω̃(x)Φα(x) + ∆(x) + ∆∗(x)Φ2
α(x) . (90)

Here, we have introduced ω̃(x) = ω − V (x). Similar Riccati equations have recently
been obtained by Schopohl [58] from the Eilenberger equations of superconductiv-
ity. To specify the initial conditions, let us assume that outside the interval [0, L]
the potentials V (x) and ∆(x) are real constants, VBC and ∆BC ≥ 0. This amounts
to taking the limit Λ → ∞, but keeping L constant. The initial values Φ+(0) =
limΛ→∞ S12(0,−Λ)/S22(0,−Λ) and Φ−(L) = limΛ→∞(S−1)12(L+Λ, L)/(S−1)22(L+
Λ, L) can be obtained by evaluating the S-matrix for constant potentials.

3.3.2 The S-matrix for constant potentials

For constant potentials Vn and ∆n, the time-ordering operator T may be omitted in
Eq. (81), and the S-matrix is given by

Sn(x− x′) = cosh[
√

|∆n|2 − ω̃2
n (x− x′)]σ0

+ i sinh[
√

|∆n|2 − ω̃2
n (x− x′)]

ω̃nσ3 +∆nσ+ −∆∗
nσ−

√

|∆n|2 − ω̃2
n

. (91)

5Note also that the definition of Φα(x) does not involve the extra factor ±i used in Ref. [24].
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For |∆n|2 < ω̃2
n, the argument of the square root is negative, so that in this case we

write the S-matrix as

Sn(x − x′) = cos[
√

ω̃2
n − |∆n|2 (x− x′)]σ0

+ i sin[
√

ω̃2
n − |∆n|2 (x − x′)]

ω̃nσ3 +∆nσ+ −∆∗
nσ−

√

ω̃2
n − |∆n|2

. (92)

For notational simplicity, let us introduce ∆red
n ≡

√

|∆n|2 − ω̃2
n. To calculate Φ+(0)

and Φ−(L), we take the limit x→ ±∞ of the ratio Sn12(x)/Sn22(x) and obtain

lim
x→±∞

Sn12(x)

Sn22(x)
=

±i∆red
n − ω̃n

∆∗
n

. (93)

If we keep in mind that the frequency ω involves a small imaginary part, we see that
this result is not restricted to the case |∆n|2 > ω̃2

n: For |∆n|2 ≤ ω̃2
n the square root

has to be taken such that the right-hand side of Eq. (93) vanishes as ∆n → 0. This
follows directly from the definition of the S-matrix.

3.3.3 Initial conditions

It follows from Eq. (93) that the Riccati equation (90) should be integrated with the
initial conditions

Φ+(0) = Φ∗
−(L)

=











i
√

∆2
BC

−(ω−VBC)2−(ω−VBC)

∆BC
, ∆2

BC > (ω − VBC)
2 ,

sgn(ω−VBC)
√

(ω−VBC)2−∆2
BC

−(ω−VBC)

∆BC
, ∆2

BC ≤ (ω − VBC)
2 ,

(94)

where sgn(x) is equal to 1 for positive x and equal to −1 for negative x. While for
∆BC = 0 the initial conditions are given by Φ+(0) = Φ∗

−(L) = 0, for ∆BC → ∞ one
gets Φ+(0) = Φ∗

−(L) = i. Note that for arbitrary potentials VBC and ∆BC, the initial
values are simply given by the stable stationary solution of the Riccati equation (90)
with V (x) = VBC and ∆(x) = ∆BC.

3.3.4 The case of a discrete spectrum

Defining the (complex) phase ϕα(x) via

Φα(x) = eiϕα(x) , (95)

and decomposing ∆(x) into its amplitude |∆(x)| and its phase ϑ(x),

∆(x) = |∆(x)|eiϑ(x) , (96)

the Riccati equation (90) turns into

∂xϕα(x) = 2ω̃(x) + 2|∆(x)| cos [ϕα(x)− ϑ(x)] . (97)

Note that this equation of motion is of the Langevin type [59, 60]

∂xv(x) = −a+ b1V (x) + b∗2(v)∆(x) + b2(v)∆
∗(x) . (98)
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Let us consider the case (ω − VBC)
2 < ∆2

BC: It directly follows from Eq. (94) that
|Φ+(0)| = |Φ−(L)| = 1, such that the initial values ϕ+(0) and ϕ−(L) are real. Hence,
the solutions of Eq. (97) remain real, which implies |Φα(x)| = 1 for all x. As can be
seen from Eq. (94), ϕ+(0) and ϕ−(L) can be chosen to fulfill ϕ+(0) = −ϕ−(L) ∈ [0, π],
so that the initial values ϕ+(0) and ϕ−(L) are uniquely determined by

cotϕ+(0) = − cotϕ−(L) = − ω − VBC
√

∆2
BC − (ω − VBC)2

. (99)

For the phases ϕα(x) to be continuous, they have to be unreduced phases which are
not limited to take values between 0 and 2π. In terms of the ϕα(x), the local DOS
can be written as

ρ(x, ω) = − 1

π
Im cot

[

ϕ+(x)− ϕ−(x)

2
+ i0

]

= 2

∞
∑

m=−∞
δ (ϕ+(x) − ϕ−(x) − 2πm) . (100)

It is easy to show that for x ≥ 0 the phase ϕ+(x, ω) is a monotonic increasing function
of ω. For the initial value at x = 0, this follows from Eq. (99):

∂ωϕ+(0) = −∂ωϕ−(L) =
1

√

∆2
BC − (ω − VBC)2

> 0 . (101)

It can be seen directly from Eq. (97) that ∂ωϕ+(x) > 0 is true for every x ≥ 0. More
formally, differentiating the equation of motion (97) with respect to ω gives

∂x∂ωϕα(x, ω) = 2− 2|∆(x)| sin [ϕα(x) − ϑ(x)] ∂ωϕα(x, ω) . (102)

Solving this first-order differential equation for ∂ωϕα(x, ω), we obtain

∂ωϕα(x, ω) = ∂ωϕα(x0, ω)

+ 2

∫ x

x0

exp

[

−2

∫ x

x′

|∆(x′′)| sin [ϕα(x
′′)− ϑ(x′′)] dx′′

]

dx′ . (103)

Since both terms on the right-hand side of Eq. (103) are positive for α = + and
x0 = 0, we have ∂ωϕ+(x, ω) > 0 for x ≥ 0. Analogously we find ∂ωϕ−(x, ω) < 0 for
x ≤ L. For arbitrary ω, ϕ+(x, ω) integrated with the initial condition ϕ+(0, ω) given
in Eq. (99) will usually not be equal to ϕ−(L, ω) up to a multiple of 2π at x = L.
For certain discrete frequencies ωm, however, this is the case. Since ϕ+(x, ω) is a
monotonic function of ω, we can uniquely define ωm by the condition

ϕ+(L, ωm) = ϕ−(L, ωm) + 2πm . (104)

Note that ωm is only well-defined if it turns out that (ωm − VBC)
2 < ∆2

BC. Since the
right-hand side of Eq. (97) is a 2π-periodic function of ϕα(x), we see that ϕ+(x, ωm)
and ϕ−(x, ωm) are equal up to the constant 2πm for every x ∈ [0, L],

ϕ+(x, ωm)− ϕ−(x, ωm) = 2πm . (105)
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Of course, the ωm are the discrete eigenvalues of the system. This follows immediately
from the fact that the local DOS ρ(x, ω) is equal to zero if not ω = ωm for one m.
Therefore, the total DOS is given by

ρ(ω) =
1

L

∑

m

δ(ω − ωm) . (106)

Using the well-known formula δ (f(ω)) =
∑

m
1

|f ′(ωm)|δ(ω − ωm), where ωm are the

zeros of f(ω), we can write Eq. (100) as

ρ(x, ω) =
∑

m

2δ(ω − ωm)

|∂ωϕ+(x, ω)− ∂ωϕ−(x, ω)|
. (107)

Expressing ∂ωϕα(x, ω) by the right-hand side of Eq. (103) with α = + and x0 = 0 or
α = − and x0 = L, respectively, we arrive for ∆BC = ∞ at

ρ(x, ω) =
∑

m

δ(ω − ωm)
∫ L

0 dx′ exp
(

−2
∫ x

x′
dx′′ |∆(x′′)| sin [ϕα(x′′, ωm)− ϑ(x′′)]

)
. (108)

Once the eigenvalues ωm have been determined, this equation in principle allows to
calculate the local DOS for arbitrary potentials V (x) and ∆(x).

3.3.5 Integrated averaged Green function Γ(ω)
In the last subsection, we have seen that the integrated DOS can be obtained by
solving a simple initial value problem for the phase ϕ(x), which is a functional of the
disorder. To implement the correct boundary conditions for a system of length L, we
have first assumed that outside the interval (0, L) the potentials are constant over a
range Λ, but then drop to zero. Finally, we have let Λ go to infinity. However, if we
are only interested in the limit L → ∞, i.e. the bulk properties, we can set Λ = 0 at
the beginning of our calculations. The physical meaning of this is that bulk properties
should be independent of the boundary conditions.

By setting the potential equal to zero outside the interval (0, L), we will not only
be able to recover the equation of motion (97) satisfied by the phase ϕ(x) which
determines the integrated DOS, we will also be able to derive an additional equation
which allows to calculate the inverse localization length.

It follows from Eq. (85) that the trace of the space-averaged diagonal element of
the retarded Green function is given by

〈

Tr[GR(x, x;ω)]
〉

x
≡ 1

L

∫ L

0

dx Tr[GR(x, x;ω)]

=
1

LS22(L, 0)

[

−i
∫ L

0

dx (S22(L, x)S22(x, 0)− S21(L, x)S12(x, 0))

]

. (109)

The term in angular brackets can easily be identified to be equal to ∂ωS22(L, 0). We
can therefore rewrite Eq. (109) as

〈

Tr[GR(x, x;ω)]
〉

x
=
∂ωS22(L, 0)

LS22(L, 0)
=

1

L
∂ω ln [S22(L, 0)] . (110)
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To describe the bulk properties, one should now take the limit L→ ∞. If we introduce
Γ(ω) as the trace of the energy-integrated space-averaged Green function at coinciding
space points,

Γ(ω) ≡ lim
L→∞

1

L
ln [S22(L, 0;ω)] , (111)

we have
〈

Tr[GR(x, x;ω)]
〉

= ∂ωΓ(ω) . (112)

While the integrated DOS is given by N (ω) = −π−1ImΓ(ω), we will see in the next
subsection that ReΓ(ω) is equal to the inverse localization length ℓ−1(ω). The decom-
position of Γ(ω) into its real and imaginary part can therefore be written as

Γ(ω) = ℓ−1(ω)− iπN (ω) . (113)

Both N (ω) and ℓ−1(ω) can simultaneously be calculated by determining the logarithm
of the S-matrix element S22. It is convenient to express the S-matrix elements in terms
of their phases. Let us define ϕαα′(x) via

Sαα′(x, 0) ≡ e−iϕαα′(x) . (114)

Γ(ω) is then given by

iΓ(ω) = lim
L→∞

ϕ22(L)

L
. (115)

Introducing ᾱ ≡ −α, the properties of the S-matrix Sαα′ = S∗
ᾱᾱ′ render into ϕαα′ =

−ϕ∗
ᾱᾱ′ . The S-matrix can be expressed in terms of ϕ12, ϕ22 and its complex conju-

gates.6 It follows from i∂xS(x, 0) =M(x)S(x, 0) that the ϕαα′ satisfy

∂xϕαα′(x) =Mαα(x) +Mαᾱ(x) exp [i(ϕαα′(x) − ϕᾱα′(x))] . (116)

Recalling that M(x) = −ω̃(x)σ3 −∆(x)σ+ +∆∗(x)σ−, the two equations for ϕ12 and
ϕ22 read

∂xϕ22(x) = ω̃(x) + ∆∗(x) exp [i(ϕ22(x) − ϕ12(x))] , (117)

∂xϕ12(x) = −ω̃(x)−∆(x) exp [−i(ϕ22(x) − ϕ12(x))] . (118)

If we now introduce

ϕ(x) ≡ ϕ22(x)− ϕ12(x) , (119)

ζ(x) ≡ −i (ϕ22(x) + ϕ12(x)) , (120)

we arrive at the following system of equations of motion:

∂xϕ(x) = 2ω̃(x) + 2|∆(x)| cos [ϕ(x) − ϑ(x)] ,

∂xζ(x) = 2|∆(x)| sin [ϕ(x) − ϑ(x)] .

(121)

(122)

6Recall that instead of α, α′ = +,− we also use i, j = 1, 2 (see footnote 3 on page 20)
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Note that Eq. (121), which determines ϕ(x), is exactly the same Langevin equation
that we derived before from the Riccati equation [see Eq. (97)] and is independent
from Eq. (122). After having found a solution to Eq. (121), ζ(x) can in principle be
obtained by integrating Eq. (122). In terms of ϕ(x) and ζ(x), Γ(ω) is now given by

iΓ(ω) = lim
L→∞

[ϕ(L) + iζ(L)] /2L . (123)

The initial condition S(0, 0) = σ0 could be mapped on the initial conditions for ϕ(0)
and ζ(0) which are, strictly speaking, singular but integrable. In the limit L → ∞,
the initial conditions finally drop out, but to describe bulk properties for finite L, it
is better to choose ϕ(0) = ζ(0) = 0, such that ϕ(x) and ζ(x) are real for all x and
there is no contribution to Γ(ω) which as L becomes large only dies out as 1/L. The
integrated DOS and the inverse localization length can now be expressed as

N (ω) = ρ0 lim
L→∞

ϕ(L)/2L ,

ℓ−1(ω) = lim
L→∞

ζ(L)/2L .

(124)

(125)

These two equations in combination with the equations of motion (121) and (122) allow
for simultaneous exact numerical computations of the (integrated) DOS and the inverse
localization length for arbitrary given disorder potentials. Since the (integrated) DOS
and the inverse localization length are self-averaging quantities [20], it is sufficient
to consider just one typical realization of the disorder potential. We will do this for
various interesting cases in Section 5.

In analytical calculations one does not usually work with a certain realization of
the disorder. Instead, one tries to calculate averaged quantities by using the given
statistical properties of the disorder potentials. Taking the average of Eq. (123) with
respect to the distribution of the random potentials V (x) and ∆(x), we obtain

i〈Γ(ω)〉 = lim
L→∞

[〈ϕ(L)〉 + i〈ζ(L)〉] /2L . (126)

Integrating the equations of motion (121) and (122) with respect to x from 0 to L,
〈Γ(ω)〉 can be rewritten as

i〈Γ(ω)〉 = lim
L→∞

1

L

∫ L

0

dx 〈ω̃(x) + ∆∗(x) exp [iϕ(x)]〉 . (127)

The average in Eq. (127) has to be taken with respect to the probability distribution
involving the disorder at x and via ϕ(x) also at all space points between 0 and x,
which can also be considered as an average with respect to the joint probability dis-
tribution of the random potentials at x and the unreduced phase ϕ(x). However, since
exp [iϕ(x)] is a 2π-periodic function in ϕ(x), it is also sufficient to use the joint proba-
bility distribution of the random potentials and the reduced phase ϕ(x) ∈ [ 0, 2π). For
large x, the joint probability distribution becomes stationary, and since 〈V (x)〉 = 0,
Eq. (127) reduces to

i 〈Γ(ω)〉 = ω + 〈∆∗(x) exp [iϕ(x)]〉 . (128)
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We will use Eq. (128) in Section 4 to calculate both N (ω) and ℓ−1(ω) for the FGM in
the white noise limit.

3.4 Gauge invariance

It turns out that fluctuations of the forward scattering disorder have similar effects
on the DOS and localization length as have phase fluctuations of the gap parameter.
To illuminate the hidden symmetry, let us again consider the equation satisfied by the
retarded Green function GR(x, x′;ω),

(

ω − V (x) + i∂x −∆(x)
−∆∗(x) ω − V (x) − i∂x

)

GR(x, x′;ω) = δ(x− x′)σ0 . (129)

A crucial point of this equation is that its form is left invariant under the gauge
transformation [61]

GR(x, x′;ω) → exp [−(i/2)χ(x)σ3]GR(x, x′;ω) exp [(i/2)χ(x′)σ3] , (130)

V (x) → V (x) + 1
2∂xχ(x) , (131)

∆(x) → ∆(x) exp[−iχ(x)] . (132)

Here, χ(x) is a local phase rotation which is allowed to vary arbitrarily from point to
point. Since the trace of a product of matrices is invariant under cyclic permutations
of the matrices, TrGR(x, x;ω) and therefore the local DOS and the inverse localization
length are also invariants under the above gauge transformation.7

Instead of directly looking at the trace of the Green function at coinciding space
points, we can also consider the equations of motion (121) and (122). Their form is
gauge invariant under the combined transformation

ϕ(x) → ϕ(x) − χ(x) , (133)

ζ(x) → ζ(x) , (134)

V (x) → V (x) + 1
2∂xχ(x) , (135)

ϑ(x) → ϑ(x) − χ(x) . (136)

It follows from Eqs. (124) and (125) that both the integrated DOSN (ω) and the inverse
localization length ℓ−1(ω) are invariant under the considered gauge transformations.
Only in the unusual case of a finite limit limL→∞ χ(L)/L we get an irrelevant shift in
the additive constant of N (ω). The choices for which either V (x) or ϑ(x) vanishes are
especially convenient.

1. Effectively vanishing phase fluctuations: If ϑ(x) is differentiable, we can define
χ(x) ≡ ϑ(x), such that there are no phase fluctuations of ∆(x) left and ∆(x)
can be taken to be real and positiv. We will use the resulting transformations
V (x) → V (x) + ∂xϑ(x)/2 and ∆(x) → |∆(x)| at the end of Section 5 to find an
exact solution for the FGM involving only phase fluctuations.

7Strictly speaking, it follows only that ∂ωℓ−1(ω) is left invariant. The integration constants at
ω = ∞ are, however, the same, so that ℓ−1(ω) is invariant under the gauge transformation.
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2. Effectively vanishing forward scattering potential: Choosing the phase χ(x) such
that ∂xχ(x)/2 = −V (x), the forward scattering potential V (x) can be eliminated
by renormalizing the phase fluctuations ϑ(x) of the backscattering potential
∆(x).

3.5 Lyapunov exponent and localization length

In this subsection, we will explicitly show that the Thouless formula holds for the FGM
and that ReΓ(ω) can indeed be identified with the inverse localization length ℓ−1(ω).

One of the striking properties of disordered systems treated in the independent electron
approximation is the fact that the disorder can lead to a macroscopic large number
of localized states. These states are eigenfunction of the Schrödinger equation falling
off exponentially with distance from one point in space which is characteristic for the
particular solution. In one dimension, an arbitrary weak disorder suffices to localize
all eigenstates (excluding perhaps states at isolated energy values) [62]. As a conse-
quence, the diffusion coefficient and the dc conductivity vanish. Therefore, there is no
metal-insulator transition in one dimension.

3.5.1 Thouless formula

Since the energy dispersion of the FGM is linear, the Schrödinger equation of the FGM,
Ĥψ(x) = ωψ(x), is a linear first order differential equation. Fixing the two-component
wave function ψ(x) ≡ (ψ1(x), ψ2(x))

T at one space point x0 therefore constitutes the
wave function at all space points x. As we will see explicitly below, for large distances
|x−x0| the envelope of the wave function will grow exponentially with probability one,
i.e. ||ψ(x)|| ∼ ||ψ0|| exp (+γ|x− x0|), where ||ψ(x)||2 ≡ |ψ1(x)|2 + |ψ2(x)|2. Of course,
ψ(x) cannot be an eigenfunction of the Hamiltonian Ĥ satisfying the right boundary
conditions. The proportionality factor γ in the exponential function is called the
Lyapunov exponent. The (mean) localization length is usually defined as the inverse
Lyapunov exponent [20],

ℓ−1(ω) ≡ γ(ω) ≡ lim
L→∞

1

L
ln

( ||ψ(L)||
||ψ0||

)

. (137)

Note that since we take the limit L→ ∞, the initial value ||ψ0|| drops out.
Let us now rewrite the Schrödinger equation such that the differential operator ∂x

is proportional to the unit matrix. As in the non-Abelian Schwinger-ansatz we factor
out a σ3-matrix so that the wave function ψ̃(x) ≡ σ3ψ(x) satisfies

[i∂x −M(x)] ψ̃(x) = 0 . (138)

Here,M(x) is the matrix defined in Eq. (74). The solution to the Schrödinger equation
(138) is therefore given by

ψ̃(x) = S(x, x0)ψ̃0 . (139)

It follows with ||ψ̃(x)|| = ||ψ(x)|| that the Lyapunov exponent can be expressed in
terms of the S-matrix,

γ(ω) = lim
L→∞

1

L
ln
∣

∣

∣

∣

∣

∣S(L, 0) ψ̃0

∣

∣

∣

∣

∣

∣ . (140)
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Due to |S11|2 = |S12|2 + 1, S22 = S∗
11 and S21 = S∗

12, all S-matrix elements grow
equally fast and we have8

γ(ω) = lim
L→∞

1

L
ln |S22(L, 0)| . (141)

Comparing this equation with Eq. (111), we see that the inverse localization length
ℓ−1(ω) ≡ γ(ω) is in fact equal to ReΓ(ω). The equation

ℓ−1(ω) = ReΓ(ω) (142)

is known as the Thouless formula [63] and was first shown to be valid for the FGM
by Hayn and John [67] in a different and more complicated way. But note that these
authors have only derived Eq. (142) up to an integration constant which they had to
determine by different means.

3.5.2 Localization length at ω = 0 for real ∆(x)
Although we are going to postpone detailed calculations of the DOS and the localiza-
tion length to the next sections, let us now consider the localization length at frequency
ω = 0 for a real disorder potential ∆(x) and V (x) = 0. In this case,M(x) = −iσ2∆(x),
so that the S-matrix may be expressed without the path-ordering operator as

S(x, x′) = cosh

[∫ x

x′

∆(y) dy

]

σ0 − sinh

[∫ x

x′

∆(y) dy

]

σ2 . (143)

It follows from Eq. (141) that the inverse localization length at ω = 0 is given by

ℓ−1(0) = lim
L→∞

1

L
ln

(

cosh

[

∫ L

0

∆(x) dx

])

= |〈∆(x)〉x| = |∆av| , (144)

where we have used the fact that the average 〈∆(x)〉x ≡ limL→∞
1
L

∫ L

0
∆(x) dx is equal

to the expectation value ∆av. The inverse localization length at frequency ω = 0 is
equal to the absolute value of the expectation value of the backscattering potential
〈∆(x)〉 and does not depend on the random fluctuations around this average value.
Note that this result is valid for arbitrary higher correlation functions of ∆(x). In the
case 〈∆(x)〉 = 0, the localization length diverges for ω = 0 which clearly distinguishes
the point ω = 0. The ω = 0 eigenstate is delocalized!

4 Exact results

In this section, we review exact results for the density of states (DOS) and the inverse
localization length of the fluctuating gap model in the white noise limit and the limit
of infinite correlation lengths ξ.

8It should be noted that the above reasoning is not true in the unprobable case where ψ̃0 is very
close to the eigenvector to the smallest eigenvalue of S. However, since the definition of the Lyapunov
exponent involves the limit L → ∞, this only happens with zero probability.



30 Ann. Phys. (Leipzig) 1 (2001) 1

4.1 The white noise limit

For small correlation lengths ξ, the disorder of the fluctuating gap model (FGM) may
be approximated by Gaussian white noise. This ξ → 0 limit is of special interest
because in this case the disorder at different space points is uncorrelated which basi-
cally admits for an exact analytic solution of the model. Various methods may now
be applied to find analytic results for the density of states (DOS). Ovchinnikov and
Erikhman [16] were the first to solve the commensurate case for which the random
backscattering potential ∆(x) is real. They showed that in the symmetric phase for
which 〈∆(x)〉 = 0, the DOS has a Dyson singularity previously found by Dyson [17].
In the case of 〈∆(x)〉 6= 0 which models a phase below a phase transition, the DOS
either exhibits a singularity or a pseudogap near the Fermi energy depending on the
ratio of the disorder and the static gap. Using the technique of S-matrix summation,
Golub and Chumakov [64] confirmed the results by Ovchinnikov and Erikhman and
were also able to solve the incommensurate case. In the incommensurate case which
is described by a complex backscattering potential, there is no singularity and the
disorder can only lead to a filling up of the pseudogap. The incommensurate case was
also considered by Abrikosov and Dorotheyev [65].

In recent years, the method of supersymmetry developed by Efetov [66] has been
established as a powerful tool to describe disordered systems in the white noise limit.
First, Hayn and John [67] re-derived the Ovchinnikov and Erikhman result for the
DOS and were also able to give an analytic expression for the localization length.
Later, Hayn and Fischbeck [68, 69] used the method of supersymmetry to generalize
the known results for the integrated DOS to the case of three independent disorder
parameters which describe forward, backward, and umklapp scattering. These solu-
tions include both the commensurate and the incommensurate case as special cases.
Finally, both the integrated DOS and the localization length were calculated by Hayn
and Mertsching [26] in the most general case with a complex static gap parameter and
three disorder parameters.

In this section, we use the formalism developed in the previous section and follow
the ideas of Lifshits, Gredeskul and Pastur [20] to show that the probability density for
the distribution of the reduced phase ϕ satisfies a continuity equation. The stationary
probability flux of the continuity equation turns out to be equal to the integrated DOS.
We then derive an equation closely related to a Fokker-Planck equation which allows
to rederive the integrated DOS for the most general case exactly. Before considering
the most general case we discuss the commensurate case, i.e. the Ovchinnikov and
Erikhman limit which we can solve in analogy to Halperin’s calculation of the inte-
grated DOS of a particle with an effective mass in a white noise disorder potential [70].
The treatment of the general case is similar but more awkward than the Ovchinnikov
and Erikhman limit because instead of a linear differential equation of second order
one has to face a linear differential equation of fourth order. The equations to deter-
mine the integrated DOS and the localization length are, however, the same as those
derived by Hayn and Mertsching using the method of supersymmetry [26] so that we
recover their general results which also include the incommensurate case which we will
discuss afterwards.
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4.1.1 Equality of the integrated density of states and the stationary probability flux

As shown in the previous section, the averaged integrated DOS can be written in the
thermodynamic limit as [see Eq. (128)]

N (ω) = 〈Fω(V,∆, ϕ)〉/2π . (145)

Fω(V,∆, ϕ) is linear in the disorder V , Re∆, Im∆ and given by

Fω(V,∆, ϕ) = 2(ω − V ) + 2Re∆cosϕ+ 2 Im∆sinϕ . (146)

The unreduced phase ϕ(x, ω) satisfies the equation of motion (121) which can also be
written as

∂xϕ(x, ω) = Fω(V (x),∆(x), ϕ(x, ω)) . (147)

Continuity equation

The space-dependent probability distribution can be defined as

Pω(x, ϕ) = 〈δ2π(ϕ− ϕ(x, ω))〉 , (148)

where δ2π(x) ≡
∑∞

m=−∞ δ(x − 2πm) is the 2π-periodic delta function. A continuity
equation may be derived by partially differentiating Pω(x, ϕ) with respect to x which
results in ∂xPω(x, ϕ) = −∂ϕ〈δ2π(ϕ − ϕ(x, ω))∂xϕ(x, ω)〉. Replacing ∂xϕ(x, ω) by the
right-hand side of Eq. (147), the continuity equation reads

∂xPω(x, ϕ) + ∂ϕJω(x, ϕ) = 0 , (149)

where the probability flux Jω(x, ϕ) is given by

Jω(x, ϕ) = 〈δ2π(ϕ− ϕ(x, ω))Fω(V (x),∆(x), ϕ(x, ω))〉 . (150)

Letting x go to infinity, the probability distribution and the probability flux become
stationary, i.e. independent of x. Due to the continuity equation (149), Jω becomes
also independent of ϕ. Integrating the stationary form of Eq. (150) with respect to ϕ
from 0 to 2π therefore leads to 2πJω = 〈Fω(V,∆, ϕ)〉, so that together with Eq. (145)
we find the remarkable relationship [20]

N (ω) = Jω . (151)

The integrated DOS, i.e. the number of states in the energy interval ( 0, ω] per unit
length, is equal to the stationary probability flux. Note that this result is valid for any
disorder potential and is not restricted to the white noise limit which we will consider
in the following.
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4.1.2 White noise and the Fokker-Planck equation

While for arbitrary finite correlation lengths ξ and Gaussian statistics, it does not
seem to be possible to find an exact analytic expression for the (integrated) DOS, the
white noise limit ξ → 0, V 2

σ ξ → DV , (Re∆σ)
2ξ → DR, and (Im∆σ)

2ξ → DI admits
for an exact solution. This is due to the fact that in this case the disorder at different
space points is uncorrelated. In the white noise limit, the disorder is characterized by
the correlation functions

〈V (x)〉 = 0 , 〈V (x)V (x′)〉 = 2DV δ(x− x′) , (152)

〈Re∆(x)〉 = Re∆0 , 〈Re ∆̃(x)Re ∆̃(x′)〉 = 2DR δ(x − x′) , (153)

〈 Im∆(x)〉 = Im∆0 , 〈 Im ∆̃(x) Im ∆̃(x′)〉 = 2DI δ(x − x′) , (154)

where ∆̃(x) ≡ ∆(x)−∆0. It is no loss of generality to assume that the first moment of
the forward scattering potential V (x) vanishes because a finite value would only lead
to a renormalization of ω. Since the probability distribution of the disorder is assumed
to be Gaussian, higher correlation functions are simply given by Wick’s theorem.

To cast the continuity equation into a Fokker-Planck equation, we make use of the
Gaussian nature of the disorder, so that for a functional f{V (y)} of the disorder V (y)

we have 〈V (x)f{V (y)}〉 =
∫

dx′ 〈V (x)V (x′)〉
〈

δf{V (y)}
δV (x′)

〉

, where in the last term we

take the functional derivative of f{V (y)} with respect to V (x′). Using Eq. (152), this
simplifies to

〈V (x)f{V (y)}〉 = 2DV

〈

δf{V (y)}
δV (x)

〉

. (155)

If we want to apply this relation to Eq. (150), f{V (y)} has to be replaced by the
2π-periodic delta-function δ2π(ϕ− ϕ(x, ω)) whose phase ϕ(x, ω) is a functional of the
disorder involving the disorder at all space points y ≤ x. Using the chain rule for the
functional derivative, we get

〈δ2π(ϕ(x, ω)− ϕ)V (x)〉 = −2DV ∂ϕ

〈

δ2π(ϕ(x, ω) − ϕ)
δϕ(x, ω)

δV (x)

〉

. (156)

Writing ϕ(x, ω) as ϕ(x, ω) − ϕ(0, ω) =
∫ x

0
dx′ Fω(V (x′),∆(x′), ϕ(x′, ω)), we find

δϕ(x,ω)
δV (x′) = −2θ(x − x′). Since in our case x = x′, θ(0) needs to be defined care-

fully (see also Itzykson and Drouffe [71]). Recalling that we have introduced the
delta function δ(x) as the limit ξ → 0 of a symmetric function of x, we see that
to maintain this symmetry, we have to define θ(0) = 1/2. It therefore follows with
Pω(x, ϕ) = 〈δ2π(ϕ− ϕ(x, ω))〉 that

〈δ2π(ϕ− ϕ(x, ω))V (x)〉 = 2DV ∂ϕPω(x, ϕ) . (157)

Similarly, we can show that

〈δ2π(ϕ− ϕ(x, ω))Re ∆̃(x)〉 = −2DR∂ϕ(cosϕPω(x, ϕ)) , (158)

〈δ2π(ϕ− ϕ(x, ω))Im ∆̃(x)〉 = −2DI∂ϕ(sinϕPω(x, ϕ)) . (159)
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Making use of these relations, the probability flux Jω(x, ϕ) is given by

Jω(x, ϕ) = 2[ω +Re∆0 cosϕ+ Im∆0 sinϕ]Pω(x, ϕ)

− 4 [DV ∂ϕPω(x, ϕ) +DR cosϕ∂ϕ (cosϕPω(x, ϕ))

+DI sinϕ∂ϕ (sinϕPω(x, ϕ))] . (160)

The probability flux can also be written as

Jω(x, ϕ) = Aω(ϕ)Pω(x, ϕ) −
1

2
∂ϕ [B(ϕ)Pω(x, ϕ)] , (161)

where

Aω(ϕ) = 2 [ω +Re∆0 cosϕ+ Im∆0 sinϕ]− 4(DR −DI) cosϕ sinϕ , (162)

B(ϕ) = 8
[

DV +DR cos2 ϕ+DI sin
2 ϕ
]

. (163)

Note that the forward scattering disorder DV only leads to a renormalization of DR

and DI . We therefore define D̃R ≡ DR +DV and D̃I ≡ DI +DV .
Eq. (161) together with the continuity equation explicitly shows that the probabil-

ity distribution satisfies the following one-dimensional Fokker-Planck equation [59, 60]:

∂xPω(x, ϕ) = −∂ϕ [Aω(ϕ)Pω(x, ϕ)] +
1

2
∂ 2
ϕ [B(ϕ)Pω(x, ϕ)] . (164)

To find an analytic expression for the integrated DOS, we use the fact that, as shown
above, N (ω) is equal to the stationary probability flux. A good starting point to
calculate the integrated DOS is therefore the stationary form of Eq. (161), which is
nothing but the integrated stationary Fokker-Planck equation with the constant of
integration being the stationary probability flux that is equal to the integrated DOS

N (ω) = Aω(ϕ)Pω(ϕ)−
1

2
∂ϕ [B(ϕ)Pω(ϕ)] . (165)

In principle, one could first find a solution for [B(ϕ)Pω(ϕ)] to this first-order differ-
ential equation subject to the boundary condition [B(2π)Pω(2π)] = [B(0)Pω(0)] with

N (ω) as a parameter and could then use the normalization condition
∫ 2π

0 dϕPω(ϕ) = 1
to determine N (ω). While this procedure works quite well in the incommensurate
case with DR = DI and after a variable transformation also in the commensurate case
(without forward scattering) for which DI = DV = 0, the most general case consid-
ered here seems to defy such a treatment. Here, we therefore present an alternative
method which allows to recover all known results in the white noise limit.

4.1.3 The density of states in the white noise limit

To find the (integrated) DOS for arbitrary parameters DR, DI , DV and complex ∆0,
we first use the variable transformation

z = tan
(ϕ

2
− π

4

)

. (166)

The trigonometric functions sinϕ and cosϕ can now be expressed in terms of z as

sinϕ = 1−z2

1+z2 , and cosϕ = − 2z
1+z2 . Since d z

dϕ = 1
2 (1 + z2), we find ∂ϕ = 1

2 (1 + z2)∂z ,
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and the probability distribution P (ϕ) has to be replaced by 1
2 (1 + z2)P (z). Using

these relations, Eq. (165) turns into

N (ω) =
[

(ω + Im∆0)− 2(Re∆0 − (2D̃R − D̃I))z + (ω − Im∆0)z
2

+ 2D̃Iz
3
]

P (z)− D̃I∂z

([

1 + 2D̃−1
I (2D̃R − D̃I)z

2 + z4
]

P (z)
)

. (167)

Taking the Fourier transform of this equation leads to

2πN (ω)δ(k) = (ω + Im∆0)P̃ (k)− 2i(Re∆0 − (2D̃R − D̃I))P̃
′(k)

− (ω − Im∆0)P̃
′′(k)− 2iD̃IP̃

′′′(k)

− iD̃Ik
[

P̃ (k)− 2D̃−1
I (2D̃R − D̃I)P̃

′′(k) + P̃ ′′′′(k)
]

, (168)

where

P̃ (k) =

∫ ∞

−∞
e−ikzP (z) dz (169)

is the Fourier transform of P (z) which is also known as the characteristic function [72].
Normalization of the probability distribution P (z) implies P̃ (k = 0) = 1. Assuming
higher derivatives of P (z) to be integrable, the other boundary conditions are given
by demanding that P̃ (k) → 0 sufficiently rapidly as |k| → ∞.

4.1.4 The commensurate case without forward scattering

Before we proceed with the most general case, let us first consider the Ovchinnikov
and Erikhman limit, i.e. the commensurate case without forward scattering. In this
case, ∆0 is real and may be assumed to be positive, DI = DV = 0 and we set D ≡ DR.
Eq. (168) reduces to a second order differential equation with the boundary conditions
P̃ (0) = 1 and P̃ (k) → 0 as |k| → ∞:

2πN (ω)δ(k) = ωP̃ (k) + 4iD

(

1− ∆0

2D

)

P̃ ′(k) + 4iD

(

k +
iω

4D

)

P̃ ′′(k) . (170)

Integrating this equation from −ǫ to +ǫ with ǫ→ 0+ leads to

2πN (ω) = −ω
[

P̃ ′(0+)− P̃ ′(0−)
]

. (171)

Since P (z) is real, P̃ (−k) = P̃ ∗(k), and P̃ ′(−k) = −P̃ ′∗(k), which implies

N (ω) = −ω
π
Re P̃ ′(0+) . (172)

P̃ ′(0+) can be determined by first finding a solution to the differential equation (170)
for k > 0 which vanishes as k approaches infinity and then normalizing this solution
such that P̃ (0) = 1. Because Eq. (170) is homogeneous for k > 0, it therefore follows
that if g(k) is any solution to the homogeneous differential equation which obeys
g(k) → 0 as k → ∞, then N (ω) = −ω

π Re [g′(0)/g(0)]. We introduce y(t) ≡ g(k) with
t = −i(k + iω/4D). The integrated DOS is now given by

N (ω) =
ω

π
Im

(

y′
(

ω
4D

)

y
(

ω
4D

)

)

, (173)
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where y(t) has to satisfy the differential equation

t y′′(t) +

(

1− ∆0

2D

)

y′(t) +
ω

4D
y(t) = 0 , (174)

with the only restriction that y(t) should approach zero as t goes to i∞. The general
solution of this differential equation can be expressed in terms of a linear combination
of Bessel functions of the first and second kind, Jν(x) and Nν(x) (Abramowitz and
Segun (A&S) [73]). The only solution which satisfies the boundary condition involves

the Hankel function of the first kind, H
(1)
ν (x) = Jν(x) + iNν(x). Introducing

ν =
∆0

2D
, (175)

we find y(t) = (ν/2)
t
H

(1)
ν

(

(ωt/D)
1/2
)

. Because the prefactor is real and we only

need the imaginary part of the quotient y′(ω/4D)/y(ω/4D), Eq. (173) turns into

N (ω) =
ω

π
Im







[

H
(1)
ν

(

ω
2D

)

]′

H
(1)
ν

(

ω
2D

)






. (176)

Note that this equation is valid for arbitrary ω and is even analytic in the upper half
plane. In the following discussion of the Ovchinnikov and Erikhman limit, we will
again restrict ourselves to ω > 0. It follows

N (ω) =
ω

π

Jν
(

ω
2D

)

N ′
ν

(

ω
2D

)

− J ′
ν

(

ω
2D

)

Nν

(

ω
2D

)

J2
ν

(

ω
2D

)

+N2
ν

(

ω
2D

) . (177)

The numerator can be simplified by using the Wronski relation [A&S, Eq. (9.1.16)]
Jν (x)N

′
ν (x) − J ′

ν (x)Nν (x) =
2
πx , so that as our final expression for the integrated

DOS we are left with

N (ω) =
4D

π2
[

J2
ν

(

ω
2D

)

+N2
ν

(

ω
2D

)] . (178)

This result was first obtained by Ovchinnikov and Erikhman [16] in a more complicated
manner. Differentiating Eq. (178) with respect to ω, we find

ρ(ω) = −4
[

Jν
(

ω
2D

)

J ′
ν

(

ω
2D

)

+Nν

(

ω
2D

)

N ′
ν

(

ω
2D

)]

π2
[

J2
ν

(

ω
2D

)

+N2
ν

(

ω
2D

)]2 , (179)

where the derivatives of Bessel functions could in principle also be written in terms of
Bessel functions. For ∆0 = 0 which implies ν = 0, D is the only characteristic energy
scale, and it is useful to measure all energies in terms of D. The insert at the top of
Fig. 7 shows the DOS ρ(ω) plotted versus ω/D. The DOS clearly exhibits a singularity
near ω = 0 whose asymptotic behavior can be found by noting that J0(0) is finite while
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N0(x) diverges logarithmically for small x. It follows9 with N0(x) ∼ (2/π) lnx [A&S,
Eq. 9.1.8]

N (ω) ∼ D

ln2(ω/2D)
, (180)

such that the asymptotics of the DOS for ∆0 = 0 is given by

ρ(ω) ∼ − 1

(ω/2D) ln3(ω/2D)
. (181)

Recall that to generalize this result towards arbitrary frequencies ω, we have to replace
ω by |ω|. The singularity described by Eq. (181) is called a Dyson singularity and was
first found by Dyson in a different model [17] involving also off-diagonal disorder.
Outside this singularity, the DOS is almost equal to the DOS of the disorder-free
model, taking its minima ρ(ω∗) = 0.9636 ρ0 at ω∗ = ±1.2514D.

If ∆0 6= 0, ∆0 is another characteristic energy scale. ν ≡ ∆0/2D then basically
gives the ratio of the two relevant energy scales ∆0 and D. The DOS plotted against
ω/∆0 for different values of the parameter ν is shown at the top of Fig. 7. While the
singularity only survives for ν < 1/2, the DOS is constant for ν = 1/2 and for ν > 1/2
the effects of the constant gap ∆0 dominate those due to the disorder and a pseudogap
emerges.

The algebraic dependence of the DOS at small ω on the parameter ν can be found
by using again an asymptotic expansion of the Bessel functions. If ν > 0 is fixed and
x→ 0, the Bessel function Jν(x) is finite and Nν(x) ∼ −(1/π)Γ(ν)(x/2)−ν [A&S, Eq.
(9.1.9)]. It follows

N (ω) ∼ 4D

Γ2(ν)

( ω

4D

)2ν

, (182)

so that

ρ(ω) ∼ 2ν

Γ2(ν)

( ω

4D

)2ν−1

. (183)

This implies that for ν < 1/2 the DOS in fact diverges algebraically as ω approaches
zero because in this case the exponent is negative. Although the algebraic divergence
differs from the divergence found in Dyson’s model, we will nevertheless refer to this
singularity as a Dyson singularity. For ν > 1/2, however, the exponent is positive and
the DOS vanishes algebraically.

For large ν the disorder becomes irrelevant and the DOS reduces to the mean-field
result ρ(ω) = ρ0 θ(ω

2 −∆2
0)ω/(ω

2 −∆2
0)

1/2.

9Note that the argument of the logarithm in the asymptotic form given by Ovchinnikov and
Erikhman deviates by a factor 1/2 from our result. Nevertheless both expressions lead to the same
asymptotic behavior. To take into account next to leading terms one has to use N0(x) = 2/π ln(ax)+
O(x), where a = eγ/2 which follows from A&S, Eq. (9.1.89). Here, γ ≈ 0.5772 is Euler’s constant
which leads to a ≈ 0.8905. This value is closer to our choice a = 1 than to Ovchinnikov’s and
Erikhman’s choice a = 1/2.
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Fig. 7 The DOS ρ(ω) and the inverse localization length ℓ−1(ω) in the white
noise limit for the commensurate case plotted versus ω/∆0 for ν = ∆0/2D =
0.1, 0.3, 0.5, 1.0, 3.0, 10.0, 100.0,∞ or ν = ∆0/2D = 0.1, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, respec-
tively. The inserts show the respecting graphs for the case ∆0 = 0, i.e. ν = 0.
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Localization length

Since Γ(ω) ≡ ℓ−1(ω)− iπN (ω) is an analytic function in the upper half plane, we can
also easily find an analytic expression for the localization length ℓ−1(ω). It follows
from Eq. (176) that up to a constant

Γ(ω) = −ω

[

H
(1)
ν

(

ω
2D

)

]′

H
(1)
ν

(

ω
2D

)
. (184)

The inverse localization length is now given by

ℓ−1(ω) = ReΓ(ω) = −ωJν
(

ω
2D

)

J ′
ν

(

ω
2D

)

+Nν

(

ω
2D

)

N ′
ν

(

ω
2D

)

J2
ν

(

ω
2D

)

+N2
ν

(

ω
2D

) . (185)

Comparing the right-hand side of this equation with Eqs. (178) and (179), we find

ℓ−1(ω) = D
ω ρ(ω)

N (ω)
. (186)

This equation is exact and can already be found Ref. [20].
If ∆0 = 0, it follows from Eqs. (180) and (181) that ℓ−1(ω) vanishes logarithmically

as ω approaches zero,

ℓ−1(ω) ∼ − 2D

ln (ω/2D)
. (187)

Using Eqs. (182) and (183), we get for arbitrary ∆0

ℓ−1(0) = ∆0 , (188)

which, as can be seen from Eq. (187) is also true for ∆0 = 0. Eq. (188) agrees with
Eq. (144), so that Γ(ω) involves no extra constant. For large frequencies, ρ(ω) → ρ0
and N (ω) → ρ0 ω, such that

ℓ−1(ω) → D . (189)

A plot of the inverse localization length ℓ−1(ω) for various values of ν = ∆0/2D is
given at the bottom of Fig. 7.

4.1.5 Solving the general case with arbitrary parameters DR, DI , DV and ∆0

While in the commensurate case we only had to solve a differential equation of second
order, for DI 6= 0, Eq. (168) is a differential equation of fourth order and more difficult
to solve. Without loss of generality we may assume that D̃R > D̃I (later we can also
take the limit D̃R → D̃I). Integrating Eq. (168) from −ǫ to +ǫ with ǫ → 0+, we can
proceed as before and express the integrated DOS in terms of P̃ (k) and derivatives
thereof evaluated at ±0+. Integrating the terms linear in k by parts and using again
the fact that P̃ (n)(−k) = (−1)nP̃ (n)∗(k), we find

N (ω) =
1

π
Im
[

−i(ω − Im∆0)P̃
′(0+) +DI P̃

′′(0+)
]

. (190)
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So, if y(k) is any solution to the homogeneous differential equation

(ω + Im∆0)y(k)− 2i(Re∆0 − (2D̃R − D̃I))y
′(k)− (ω − Im∆0)y

′′(k)

− 2iD̃Iy
′′′(k)− iD̃Ik

[

y(k)− 2D̃−1
I (2D̃R − D̃I)y

′′(k) + y′′′′(k)
]

= 0 , (191)

which vanishes for k → ∞ sufficiently rapidly, then the integrated DOS is given by

N (ω) =
1

π
Im

[

−i(ω − Im∆0)
y′(0)

y(0)
+DI

y′′(0)

y(0)

]

. (192)

Again, since Γ(ω) ≡ ℓ−1(ω)− iπN (ω) is an analytic function in the upper half plane,
up to a constant we have

Γ(ω) = i(ω − Im∆0)
y′(0)

y(0)
− D̃I

y′′(0)

y(0)
. (193)

Using the method of supersymmetry invented by Efetov [66], Hayn and Mertsching
[26] derived the set of equations (191) and (193) by different means10. Applying the
method of Laplace transforms they found an exact expression with the constant of
integration chosen such that one obtains the correct asymptotic behavior for large
frequencies determined in the Born approximation, Γ(ω) = D − iω = DR +DI − iω.
Here, instead of presenting a lengthy derivation, we will only cite the exact result
found in [26]:

Γ(ω) = 2DI + 4D̃R

[

z(1− z)
F ′(z)

F (z)
+ zδR − i(1− z)ǫ

]

. (194)

In this equation, F (z) is the hypergeometric function

F (z) = F (12 − iǫ+ iδI − δR,
1
2 − iǫ− iδI − δR, 1− 2iǫ; z) , (195)

with the parameters δR, δI , ǫ, and z (in our notation) given by

δR =
Re∆0

4
(

D̃R(D̃R − D̃I)
)1/2

, δI =
Im∆0

4
(

D̃I(D̃R − D̃I)
)1/2

, (196)

ǫ =
ω

4
(

D̃RD̃I

)1/2
, z =

D̃R − D̃I

D̃R

. (197)

Recall that we incorporated the parameter of the forward scattering disorder, DV ,
into DR and DI by defining D̃R ≡ DR +DV and D̃I ≡ DI +DV . Only the additive
constant 2DI in Eq. (194) does not get renormalized by DV . This is due to the fact
that for large frequencies Γ(ω) ∼ DR +DI − iω is independent of DV . The imaginary
part of Eq. (194) determines the integrated DOS,

N (ω) = ρ0

(

D̃R

D̃I

)1/2−2δR
ω

|F |2 . (198)

10Hayn and Mertsching use a slightly different notation but apart from this and some irrelevant
different signs their expressions are equal to ours.
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Taking the confluent limit DI → 0 of Eq. (194), one can recover Eq. (184) which
describes the commensurate case without forward scattering. Turning on the forward
scattering disorder DV in the general expression gradually removes the singularity in
the DOS for ν < 1/2. Below, we are only going to discuss the incommensurate case.
Other special cases can be found in [26, 67–69,74].

4.1.6 The incommensurate case

In the incommensurate case, DR = DI ≡ D/2, and the forward scattering potential
DV only leads to a renormalization of D. If we introduce D̃ ≡ D+DV = D̃R/2+D̃I/2
and take the confluent limit DI → DR in Eq. (194), we obtain

Γ(ω) = D − iω +∆0

I1−iω/D̃

(

∆0

D̃

)

I−iω/D̃

(

∆0

D̃

) , (199)

which is equivalent to

Γ(ω) = D +∆0

I ′−iω/D̃

(

∆0

D̃

)

I−iω/D̃

(

∆0

D̃

) . (200)

The imaginary part of Eq. (199) determines the integrated DOS,

N (ω) =
D̃

π
sinh

(

πω

D̃

)

ρ0
∣

∣

∣
Iiω/D̃

(

∆0

D̃

)∣

∣

∣

2 . (201)

This expression agrees with Ref. [64]. A plot of the DOS for different values of the
parameter ν = ∆0/2D is shown at the left-hand side of Fig. 8. There is no Dyson
singularity, and in the absence of a static gap ∆0, the disorder has no effect on the
DOS so that ρ(ω) = ρ0 for ν = 0. At zero frequency, ρ(0) is always finite and the DOS

vanishes with increasing ν as ρ(0) = ρ0/ [I0(2ν)]
2
. For a given ∆0, the disorder leads

to a filling of the gap. As in the commensurate case, in the limit D → 0, i.e. ν → ∞,
the DOS reduces to the mean-field result ρ(ω) = ρ0 θ(ω

2 −∆2
0) |ω|/(ω2 −∆2

0)
1/2.

Taking the real part of Eq. (199), we get for the inverse localization length

ℓ−1(ω) = D+∆0

Iiω/D̃

(

∆0

D̃

)

I1−iω/D̃

(

∆0

D̃

)

+ I−iω/D̃

(

∆0

D̃

)

I1+iω/D̃

(

∆0

D̃

)

2
∣

∣

∣Iiω/D̃

(

∆0

D̃

)∣

∣

∣

2 .(202)

In contrast to the commensurate case, the localization length at ω = 0 is finite for any
∆0 and given by

ℓ−1(0) = D +∆0

I1

(

∆0

D̃

)

I0

(

∆0

D̃

) . (203)
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Fig. 8 The DOS ρ(ω) and the inverse localization length ℓ−1(ω) in the white
noise limit for the incommensurate case plotted versus ω/∆0 for ν = ∆0/2D =
0.0, 0.3, 0.5, 1.0, 3.0, 10.0, 30.0,∞ or ν = ∆0/2D = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, respectively.

While for ∆0/D̃ → 0 one has ℓ−1(0) → D (and also ℓ−1(ω) → D for every ω), for
∆0/D̃ ≫ 1 one finds ℓ−1(0) ∼ ∆0 + D/2 − DV /2. For weak disorder, the disorder
creates a few localized states with energies |ω| < ∆0 whose inverse localization length
is given by ℓ−1(ω) ∼

√

∆2
0 − ω2. A plot of the inverse localization length for different

values of the parameter ν and DV = 0 is given at the right-hand side of Fig. 8.

4.2 Infinite correlation lengths

In the limit of infinite correlation lengths, ∆(x) becomes independent of x and exact
results for the averaged DOS of the FGM may be obtained. The limit of large cor-
relation lengths ξ is of special importance for Peierls systems because the correlation
length of the order parameter diverges at the Peierls transition. Sadovskii was the first
to consider the fluctuating gap model (FGM) with infinite correlation lengths [75] and
calculated the one-electron Green function for the incommensurate case by summing
up all diagrams in the perturbation expansion. This Green function leads to a DOS
which exhibits a pseudogap at the Fermi energy. The commensurate case was later
solved by Wonneberger and Lautenschlager [76].

Taking the ensemble average

The limit of infinite correlation lengths can be solved by averaging the desired quantity
calculated with a static gap ∆ over an appropriate probability distribution of ∆. This
amounts to taking an ensemble average.

4.2.1 The commensurate case

For real ∆ and Gaussian statistics we have

〈. . .〉 =
∫ ∞

−∞

d∆
√

2π∆2
s

e−∆2/2∆2
s . . . . (204)
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Calculating the DOS by averaging θ(ω2 −∆2)ω/
√
ω2 −∆2 with respect to the above

probability distribution, one obtains

ρ∞(ω) = ρ0

√

π

2

ω

∆s
e−ω2/4∆2

s I0

(

ω2

4∆2
s

)

. (205)

Here, I0(u) is the modified Bessel function with index 0.

If we define the inverse localization length ℓ−1
∞ (ω) for ξ = ∞ by the Thouless

formula, we have ℓ−1
∞ (ω) =

〈√
∆2 − ω2 θ(∆2 − ω2)

〉

, such that

ℓ−1
∞ (ω)

√

2

π

ω2

∆s

∫ ∞

1

du e−(ω2/2∆2
s)u

2
√

u2 − 1 . (206)

4.2.2 The incommensurate case

For complex ∆(x) and Gaussian statistics, the process of averaging can be written as

〈. . .〉 =
∫

dRe∆ dIm∆

π∆2
s

e−|∆|2/∆2
s . . . . (207)

A similar calculation as above leads to

ρ∞(ω) = 2ρ0
ω

∆s
e−(ω2/∆2

s) Erfi

(

ω

∆s

)

, (208)

ℓ−1
∞ (ω) = ∆s

√
π

2
e−ω2/∆2

s . (209)

Here, Erfi (u) ≡
∫ u

0 e
x2

dx is the error function with an imaginary argument.

Plots of ρ∞(ω) and ℓ−1
∞ (ω) can be found in the next section. While in the com-

mensurate case the DOS vanishes linearly in ω, it only vanishes quadratically in the
incommensurate case. This is due to the fact that the probability distribution for com-
plex ∆ has less weight for small |∆| than the one for real ∆. The inverse localization
length assumes for both the commensurate and the incommensurate case a finite value
at ω = 0 and drops to zero as ω increases. That ℓ−1

∞ (0) is finite in the commensurate
case seems to contradict the general result ℓ−1

∞ (0) = ∆av = 0 derived in Section 3.
One should keep in mind, however, that for ξ = ∞ we have only defined ∂ωℓ

−1
∞ (ω)

by Re 〈G(x, x;ω)〉. While for finite ξ a single chain is representative for an ensemble
of chains, for ξ = ∞, there is no self-averaging effect. On the other hand, it seems
plausible to assume that the above results for ξ = ∞ give a good approximation to
the case of finite ξ if ξ is much larger that any microscopic length scale involved. In
particular, we have to demand ∆sξ ≫ 1 and ωξ ≫ 1. The above results for the DOS
and the inverse localization length at ω = 0 can therefore not be expected to hold for
finite correlation lengths. In fact, we will see in the next section that for any finite
ξ we find in the commensurate case ρ(0) = ∞ and ℓ−1(0) = 0. For ∆sξ ≫ 1 and
ωξ ≫ 1, however, we will find a remarkable agreement between the two solutions as
predicted above.



L. Bartosch, Fluctuation effects in disordered Peierls systems 43

5 Finite correlation lengths

While in the limit of very small and infinite correlation lengths ξ of the random dis-
order, the fluctuating gap model (FGM) admits for an exact analytic calculation of
the density of states (DOS) and the inverse localization length, in the intermediate
regime of finite ξ there are only approximate solutions available. It especially turns
up the question: “How accurate are Sadovskii’s solutions [10], which for a long time
were thought to be exact?” An answer to this question is of particular interest because
Sadovskii’s solutions have become quite popular since the experimental discovery of a
pseudogap in the underdoped cuprates above the critical temperature Tc [11–13]. In
this section, we will calculate the DOS and the inverse localization length for Gaussian
statistics, as approximately done by Sadovskii with very high accuracy numerically.
Finally, we will consider the case of only phase fluctuations for which we recently
found an exact solution by applying a gauge transformation to the Green function and
mapping the original problem onto a problem involving only white noise [25].

5.1 Singularities in the density of states

The exact results of the FGM derived in the white noise limit in the previous section
imply under certain circumstances a Dyson singularity in the DOS. This singularity
arises only in the commensurate case [i.e. for real ∆(x)] and only if the forward scat-
tering potential and ∆av = 〈∆(x)〉 are sufficiently small [see Eqs. (181) and (183)].
Since the white noise limit describes the low-energy physics of physical systems char-
acterized by small correlation lengths ξ, this statement should also be true for small
but finite ξ. As far as I know, it was first shown by myself in collaboration with Peter
Kopietz that the DOS ρ(ω) of the FGM exhibits a singularity at the Fermi energy
for any finite value of the correlation length ξ if the fluctuating order parameter field
∆(x) is real and its average 〈∆(x)〉 is sufficiently small [22]. To detect the singularity,
we applied the boundary condition ∆BC = VBC = 0, such that the complete spectrum
turned out to be continuous [see Eq. (94) and its following remark]. In the Comment
[77], Millis and Monien showed that the local DOS ρ(ω = 0, x) calculated in our Letter
[22] is equal to the absolute square of the wave function ψ(x), which led them to claim
that we have not calculated the DOS at all. However, as pointed out in the Reply
[78], for the boundary conditions used in Ref. [22], one finds ρ(ω, x) = |ψω |2, i.e. the
local DOS is equal to the absolute square of the wave function. This clearly invali-
dates the argument given by Millis and Monien. Today, I would not use the artificial
boundary conditions which lead to a continuous spectrum any more: The existence of
the Dyson singularity put forward in the Letter [22] can also be seen in the discrete
case by considering the equation of motion (121) for V (x) = 0 and real ∆(x) which
after the shift ϕ→ ϕ− π/2 reads

∂xϕ(x) = 2ω + 2∆(x) sinϕ(x) . (210)

The Dyson singularity in the DOS is due to phase resonance: If ω is small (compared to
∆s, ∆

2
sξ and ξ

−1) but positive, the change of ϕ(x) is dominated by the fluctuating term
2∆(x) sinϕ(x). Only near ϕ(x) = nπ (with n an integer) we have ∂xϕ(x) = 2ω > 0,
such that ϕ(x) can only grow on average. As (ϕ(x) − nπ) ≈ ω/∆s, fluctuation effects
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of ∆(x) become important, driving ϕ(x) from nπ + ω/∆s to (n + 1)π − ω/∆s. Near
ϕ(x) = (n+1)π, the constant force 2ω dominates again and the above picture repeats
itself.

As we decrease ω, the “time” (which corresponds to the space coordinate x) to
move ϕ(x) from nπ − ω/∆s to nπ + ω/∆s will not change, but fluctuations of ∆(x)
will need slightly longer to drive ϕ(x) from nπ + ω/∆s to (n+ 1)π − ω/∆s, implying
that ϕ(x) decreases more slowly than ω as ω decreases. Now, the average DOS for
frequencies between 0 and ω is given by

ρ(ζω) =
N (ω)

ω
= lim

x→∞
ϕω(x)

2πωx
, (211)

where ζ is a number between 0 and 1. Letting ω approach zero, it follows ρ(0) = ∞.
This divergence describes the Dyson singularity in the DOS. The above reasoning is
independent of the probability distribution of ∆(x). However, it should be noted that
∆(x) must not be dominated by one sign. If ϕ(x) ≈ nπ and (−1)n∆(x) is negative,
ϕ(x) will fluctuate around the stable position near nπ + ω/∆s. ϕ(x) = (n + 1)π
can only be reached if (−1)n∆(x) is positive on average over a finite interval. We
therefore conclude that we expect a Dyson singularity if ∆(x) is real and fluctuates
around ∆av ≡ 〈∆(x)〉 with ∆av sufficiently small.

For complex ∆(x), fluctuations of the phase of ∆(x) can be mapped via the gauge
transformation (130) onto a forward scattering potential. Since the amplitude |∆(x)|
is always positive and the phase fluctuations lead to an effective local shift of the
frequency ω, there should be no Dyson singularity. Instead, we expect a suppression
of the DOS, i.e. a pseudogap.

5.2 Numerical algorithm

In the following, we present an exact algorithm which for stepwise constant potentials
allows for simultaneous numerical calculations of the integrated DOS and the inverse
localization length. By choosing the step size sufficiently small, the integrated DOS
and the inverse localization length may be calculated for arbitrary given potentials. Let
us partition the interval (0, L) into N intervals (xn, xn+1) of length δn = xn+1 − xn
with x0 = 0 < x1 < . . . < xN = L, such that ∆n ≡ ∆(x) and Vn ≡ V (x) for
xn < x < xn+1. Let us also define ω̃n as ω̃n ≡ ω − Vn.

To find an exact analytic solution for the given stepwise constant potentials of
the equations of motion (121) and (122), let us consider again the related S-matrix
S(L, 0;ω), which can be written as the finite product

S(L, 0;ω) =

N−1
∏

n=0

Sn ≡
N−1
∏

n=0

S(xn+1, xn;ω) , (212)

where Sn is given for ω2
n < |∆n|2 by Eq. (91) and for ω2

n > |∆n|2 by Eq. (92). Eq.
(212) implies the recurrence relation S(xn+1, 0;ω) = Sn S(xn, 0;ω), which can be cast
into the following recurrence relations for ϕn ≡ ϕ(xn) and ζn ≡ ζ(xn):

ϕn+1 = ϕn − 2 Im (ln zn) , (213)

ζn+1 = ζn + 2Re (ln zn) , (214)
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where zn = (Sn)22 + (Sn)21 exp (iϕn). Note that Eqs. (213) and (214) are integrated
forms of the equations of motion (121) and (122). The real and imaginary part of ln zn
can be determined by writing ln zn as ln zn ≡ ln |zn|+ i arg (zn). The argument of zn,
arg (zn) can be obtained up to a multiple of 2π from

arg (zn) = 2πmn + sgn [Im zn] arccos

(

Re zn
|zn|

)

. (215)

To find the integer

mn =

[

arg (zn)

2π
+

1

2

]

int
, (216)

we define zn(x) by zn with δn replaced by x − xn. zn(x) is an analytic function of
x and at x = xn+1 agrees with zn. For ω̃2

n < |∆n|2, it follows from Eq. (91) that
Im [zn(x)] ∝ sinh[

√

|∆n|2 − ω̃2
n (x−xn)] does not change its sign for any x > xn, such

that | arg [zn(x)] | < π and mn has to be zero. For ω̃2
n > |∆n|2, however, Im [zn(x)] ∝

sin[
√

ω̃2
n − |∆n|2 (x−xn)], such that |[arg (zn(x)) /π]int| =

[

√

ω̃2
n − |∆n|2 (x− xn)/π

]

int
.

Since the constant of proportionality is negative for ω̃n > |∆n| and positive for
ω̃n < −|∆n|, it follows

mn =

[

1

2
− sgn(ω̃n)

√

ω̃2
n − |∆n|2 δn
2π

]

int

. (217)

To summarize, we can simultaneously calculate the integrated DOS and the inverse
localization length for arbitrary stepwise constant potentials using the following iter-
ative algorithm with the initial values ϕ0 = ζ0 = 0,

ϕn+1 = ϕn − 2

[

2πmn + sgn [Im zn] arccos

(

Re zn
|zn|

)]

,

ζn+1 = ζn + 2 ln |zn| ,

(218)

(219)

where zn and mn are given by

zn = (Sn)22 + (Sn)21 exp (iϕn) ,

mn =















[

1

2
− sgn(ω̃n)

√

ω̃2
n − |∆n|2 δn
2π

]

int

, ω̃2
n − |∆n|2 > 0

0 , ω̃2
n − |∆n|2 ≤ 0

,

(220)

(221)

and the matrix elements of Sn are determined by Eqs. (91) and (92).

5.2.1 Generation of disorder

In the case of finite correlation lengths, specific extensive physical quantities (which
are obtained by relating extensive quantities to the length of the system) show a self-
averaging effect as the length of the chain increases [20], i.e. they become independent
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of the concrete realization of the disorder. This self-averaging effect can be understood
by partitioning a very long macroscopic chain into a large number of chains, each one
still being much longer than the correlation length and any other microscopic length
scale. In this case, boundary effects between adjacent parts of the original chain
may be neglected and we are practically left with an ensemble of a large number of
independent chains. Physical quantities can now be calculated for each chain indi-
vidually, assuming independently all possible values with their respective statistical
weight. Specific extensive quantities are now given by the ensemble-average, giving a
non-random value in the thermodynamic limit. The DOS and the inverse localization
length can therefore be calculated by generating one typical very long chain.

Gaussian disorder

To generate Gaussian disorder at the sample points xn with the first two moments
satisfying

〈∆(x)〉 = ∆av , 〈∆̃(x)∆̃(x′)〉 = ∆2
se

−|x−x′|/ξ , (222)

where ∆̃(x) ≡ ∆(x) − ∆av, we use a realization of an Ornstein-Uhlenbeck process
described in more general form in Ref. [23] Using the Box-Muller algorithm [79], we
generate independent Gaussian random numbers gn with 〈gn〉 = 0 and 〈g2n〉 = 1. For
real ∆(x), we generate ∆̃n = ∆n −∆av recursively by

∆̃0 = ∆sg0 , ∆̃n+1 = an∆̃n +
√

1− a2n ∆sgn+1 , (223)

where an = e−|δn|/ξ. This Markov process leads to a Gaussian random process with
the desired correlation functions. The Markov property of the algorithm allows us to
generate the disorder simultaneously with the iteration of the recurrence relations (218)
and (219), so that the algorithm presented above practically needs no memory space
and, in principle, arbitrary long chains can be considered. If we choose |δn|/ξ ≪ 1 (in
practical calculations we choose |δn|/ξ ≈ 0.0001 to 0.05 depending on ∆sξ and make
sure that lessening of |δn|/ξ does not change the results), the (integrated) DOS and
the inverse localization length may be calculated with arbitrary accuracy numerically.

Of course, the above algorithm can also be used to generate Vn and in the complex
case, Re∆n and Im∆n can be generated by replacing ∆s by ∆s/

√
2 (see Ref. [23]).

5.2.2 Results

First numerical calculations of the DOS of the FGM in the regime of finite correlation
lengths were done by myself in collaboration with Peter Kopietz using an algorithm
similar to the one presented here [24]. Simultaneously, Millis and Monien presented
their data obtained by an exact diagonalization of a lattice regularization of the FGM
[80]. However, these authors did not make any attempts to relate their results to the
continuous FGM which would have allowed for a more direct comparison with the
solutions given by Sadovskii [10].

In contrast to the algorithm described in Ref. [24], the algorithm presented here
does not only allow for a numerical calculation of the (integrated) DOS, it is also
capable of a simultaneous evaluation of the localization length which for finite ξ has
never been published before.
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Commensurate case

In Fig. 9, we show our numerical results for the DOS ρ(ω) and inverse localization
length ℓ−1(ω) for real ∆(x) (with ∆av = 0 and V (x) = 0), which refers to the
symmetric phase of a commensurate system with no forward scattering. Except for
∆sξ = 1000, 0.2 we have chosen the same values of the dimensionless parameter ∆sξ
as in Fig. 7 of Ref. [10]. One clearly sees the Dyson singularity in the DOS which exists
for any finite value of ξ and overshadows the pseudogap at sufficiently small energies.
One can also see that this Dyson singularity is accompanied by a singularity in the
inverse localization length. The inverse localization length drops to zero at ω = 0, in
accordance with the exact result ℓ−1(0) = 〈∆av〉 [see Eq. (144)].

The Dyson singularity in the DOS is missed by Sadovskii’s algorithm [10]. For a
more quantitative description of the Dyson singularity we have plotted the logarithm
of the integrated DOS N/∆s versus the logarithm of − ln(ω/∆s). For frequencies
between ω = 10−11∆s and ω = 10−6∆s, we find that the data can be very well fitted
by a straight line, such that

N (ω) = ρ0
∆sB(ξ)

| ln(ω/∆s)|α(ξ)
, (224)

which implies for the DOS

ρ(ω) = ρ0
A(ξ)

(ω/∆s)| ln(ω/∆s)|1+α(ξ)
, (225)

with A(ξ) = α(ξ)B(ξ). Plots of the exponent α(ξ) and the weight factors of the Dyson
singularity A(ξ) and B(ξ) are shown in Figs. 10 and 11. For ∆sξ ≪ 1 our data is
consistent with the white noise result α = 2. As ∆sξ increases, the exponent α(ξ)
decreases, assuming for large correlation lengths ξ the finite value

α(ξ) ≈ 0.41 , ∆sξ & 500 . (226)

Fitting the data for A(ξ) in the regime between ∆sξ = 500 and ∆sξ = 10000 to a
power law shows that the weight of the singularity of the DOS vanishes as

A(ξ) = 0.175 (∆sξ)
−0.65 . (227)

The plot of the DOS given in Fig. 9 shows that for large correlation lengths ξ the Dyson
singularity only overshadows a pseudogap, such that ρ(ω) takes a minimal value at a
certain frequency ω∗(ξ). A double-logarithmic plot of ρ(ω∗) versus (∆sξ)

−1 is given
by the triangles in Fig. 12. The straight line gives a fit to a power-law:

ρ(ω∗)/ρ0 = C (∆sξ)
−µ (228)

We find

C = 0.482± 0.010 , µ = 0.3526± 0.0043 (229)

The circles in Fig. 12 show ω∗ where ρ(ω) is minimal. The long solid line is a fit to a
power-law

ω∗/∆s = D (∆sξ)
−γ . (230)
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Fig. 9 Plot of the DOS ρ(ω) and the inverse localization length ℓ−1(ω) for real ∆(x) with
Gaussian statistics, ∆sL = 108, and finite correlation lengths ∆sξ = 1000, 100, 10, 2.0, 1.0, 0.5,
and 0.2. For any finite ξ, we find ρ(0) = ∞ and ℓ−1(ω) = 0. The dashed line represents
the exact result derived in Section 4 and for ω & 0.2∆s is almost indistinguishable from the
result for ∆sξ = 1000.
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and B(ξ) of the Dyson singularity defined by
Eqs. (224) and (225) for frequencies between
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Here, we find

D = 0.2931± 0.0074 , γ = 0.3513± 0.0051 . (231)

such that within numerical accuracy µ = γ. The proportionality of ρ(ω∗) to the energy
scale ω∗, which can be interpreted as the width of the Dyson singularity, can also
directly be seen in Fig. 9. Finally we note that for ∆sξ . 0.2 our algorithm produces
results consistent with the white noise limit ∆sξ ≪ 1. From the exact solution of
Ovchinnikov and Erikhman [16] we obtain ρ(ω∗)/ρ0 → 0.9636 and ω∗ → 1.2514∆2

sξ
which determines the short solid line in Fig. 12, describing ω∗(ξ) in the white-noise
limit.

Incommensurate case

The DOS ρ(ω) and inverse localization length ℓ−1(ω) for complex ∆(x) (and ∆av =
V (x) = 0), which refers to the symmetric phase of the commensurate case with no for-
ward scattering are presented in Fig. 13. Neither the DOS nor the inverse localization
length involve a singularity. In fact, a direct comparison of our results for the DOS
with those obtained from Sadovskii’s algorithm shows a good agreement.
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Fig. 13 Plot of the DOS ρ(ω) and the inverse localization length ℓ−1(ω) for com-
plex ∆(x) with Gaussian statistics, ∆sL = 108, and finite correlation lengths ∆sξ =
1000, 100, 10, 2.0, 1.0, 0.5, and 0.2. The dashed line represents the exact result derived in
Section 4. This line is hardly recognizable because it is almost indistinguishable from the line
for ∆sξ = 1000.
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For a more quantitative comparison, the diamonds in Fig. 12 show the DOS ρ(0)
at the Fermi energy. A fit to a power-law gives

ρ(0)/ρ0 = C (∆sξ)
−µ , (232)

with

C = 0.6397± 0.0066 , µ = 0.6397± 0.0024 . (233)

Note that within numerical accuracy we find C = µ. This result should be compared
with Sadovskii’s approximate result C = 0.541± 0.013 and µ = 1/2.

5.3 Phase fluctuations only

As already discussed at the end of Section 2, far below the mean-field critical tempera-
ture TMF

c , amplitude fluctuations of the complex order parameter ∆(x) ≡ |∆(x)|eiϑ(x)
are frozen out and only phase fluctuations survive. In terms of the “superfluid velocity”
V (x) = ∂xϑ(x)/2, the process of averaging can be written as

〈 . . . 〉 =
∫

D{V } . . . e−βF{V }
∫

D{V }e−βF{V } , (234)

where F{V } is the free energy functional given in Eq. (35). Since F{V } is Gaussian
and local, the process of averaging is described by Gaussian white noise. The first two
moments of V (x) are given by 〈V (x)〉 = 0 and

〈V (x)V (x′)〉 = 2
1

4ξ(T )
δ(x− x′) , (235)

with [see Eq.39] ξ(T ) = sρs(T )/2T . Well below the mean-field temperature TMF
c , we

can use the BCS gap equation ∆s = 1.764TMF
c and ρs(T ) ≈ ρ0 = π−1 to get for the

dimensionless parameter11 ∆sξ(T )

∆sξ(T ) = 0.281 s TMF
c /T . (236)

As already shown in Section 2, Eq. (235) implies the exponentially decaying correlation
function 〈∆(x)∆∗(x′)〉 = ∆2

s exp (−|x− x′|/ξ(T )).
To calculate physical quantities like the DOS or the inverse localization length, we

use the gauge invariance of these quantities under the gauge transformation (130) and
map the phase fluctuations of the order parameter ∆(x) = ∆se

iϑ(x) onto the effective
forward scattering potential V (x) = ∂xϑ(x)/2.

5.3.1 Density of states and inverse localization length

The DOS and the inverse localization length for the remaining problem involving only
a constant gap parameter and forward scattering described by Gaussian white noise
were already calculated in the previous section. With the exception of the constant
shift in the inverse localization length, the results are identical with those for the
incommensurate case without forward scattering and 〈∆(x)〉 = ∆0 6= 0. Substituting

11The prefactor can be expressed in terms of the Euler constant γ, such that ∆sξ(T ) = sTMF
c /2eγT .
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in Eqs. (199) and (200) ∆0 by ∆s, D̃ by 1/4ξ(T ) and setting D = 0 (since there is only
forward scattering) which implies a completely different interpretation of the resulting
equations, we get Γ(ω) = −iω +∆s I1−i4ωξ (4∆sξ)/I−i4ωξ (4∆sξ), or, equivalently,

Γ(ω) = ∆s

I ′−i4ωξ (4∆sξ)

I−i4ωξ (4∆sξ)
. (237)

It follows from Eq. (201) that the integrated DOS is given by

N (ω) = ρ0
sinh (4πωξ)

4πξ

1

|Ii4ωξ (4∆sξ)|2
. (238)

Plots of the DOS and the inverse localization length for characteristic values of ∆sξ
are shown in Fig. 14. At the Fermi energy, the DOS simplifies to

ρ(0) =
ρ0

[I0(4∆sξ)]2
, (239)

such that, as the temperature is lowered and the correlation length grows, the DOS
at the Fermi energy vanishes exponentially,

ρ(0) ∼ 8πρ0∆sξ exp(−8∆sξ) , 4∆sξ ≫ 1 . (240)

This result is in contrast to the power-law behavior of the DOS as predicted by Gaus-
sian statistics. A plot of the DOS at the Fermi energy is shown in Fig. 15 as a function
of 1/∆sξ. For a comparison, we have also plotted ρ(0) for Gaussian statistics and the
result found in the Born approximation, which at low temperatures can only poorly de-
scribe the quantitative behavior of the pseudogap. For T = TMF

c /4 which corresponds
to ∆sξ ≈ 2.0, we find that the DOS ρ(0) for phase fluctuations only is less than 10−5ρ0
while the Born approximation and the numerical exact result for Gaussian statistics
suggest a value of order ρ0/4.

As can also be seen in Fig. 15, there is no pseudogap for ∆sξ . 0.1. Note, however,
that these correlation lengths correspond to temperatures of order TMF

c , where ampli-
tude fluctuations are important. Nevertheless, using only phase fluctuations gives a
good qualitative description of the DOS for all temperatures T .

For temperatures well below the mean-field temperature TMF
c where our theory

becomes quite accurate, we have, according to Eq. (236), ∆sξ ≫ 1, such that the
Bessel function Iiν (νz) = e−πν/2 Jiν(iνz) may be approximated by an Airy function.
For large correlation lengths we expand the resulting equation for ω around ∆s and
obtain to leading order in 1/4∆sξ a maximum of the DOS ρ(ω) at ∆s, described by
the inverted parabola

ρ(ω) ∼ ρ0

[

a (4∆sξ)
1/3 − b (4∆sξ)

5/3

(

ω

∆s
− 1

)2
]

, (241)

with a = 1
24/3π

c2
c31

≈ 0.731 and b = 1
22/3π

1
c21

[

3
(

c2
c1

)3

− 1

]

≈ 0.258, where c1 = Ai (0) =

3−2/3/Γ(2/3) ≈ 0.355 and c2 = −Ai′ (0) = 3−1/3/Γ(1/3) ≈ 0.259. Note that Eq. (241)
implies that the maximum of the DOS diverges as (4∆sξ)

1/3 ∝ T−1/3.
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Fig. 14 Plot of the DOS ρ(ω) and the inverse localization length ℓ−1(ω) for phase fluctua-
tions only and ∆sξ = 0.1, 0.3, 1.0, 3.0, 10.0 and ∞.

Away from ω = ∆s, we find for ω > ∆s

ρ(ω) ∼ ρ0

(

1 +
∆2

s

4ω2

)

, 4∆sξ

(

ω

∆s
− 1

)3/2

≫ 1 , (242)
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which is independent of ∆sξ and agrees with the mean-field result. And for ω < ∆s

we find

ρ(ω) ∼ 8ρ0
√

∆2
s − ω2 ξ arccos (ω/∆s) [1 + exp(−8πωξ)]

× exp
(

−8[
√

∆2
s − ω2 ξ − ωξ arccos (ω/∆s)]

)

,

4∆sξ

(

1− ω

∆s

)3/2

≫ 1 . (243)

If ω ≪ ∆s and 4ω2ξ/∆s ≪ 1, this result simplifies to

ρ(0) ∼ 8πρ0∆sξ cosh(4πωξ) exp(−8∆sξ) . (244)

5.3.2 Pauli paramagnetic susceptibility

The Pauli paramagnetic susceptibility is defined as the contribution of the conduction
electrons to the susceptibility and can be written in terms of the DOS. A magnetic
field H shifts the energy levels of the electrons by an amount ±µBH , where µB is
the Bohr magneton and the sign depends on the spin orientation of the electron with
respect to the field. The resulting different occupation of spin-up and spin-down states
leads to a magnetization density M(T ) which for small magnetic fields is linear in H .
If ρ(ω) = ρ(−ω) as in the FGM, the susceptibility χ(T ) ≡ dM(T )/dH can be written
as

χ(T ) =
µ2
B

T

∫ ∞

0

dω ρ(ω)
1

cosh2(ω/2T )
. (245)

Placing the asymptotic expression (243) with ξ(T ) = ρs/T into this equation, we find

χ(T )/χ0 ∼ 16ρs
T 2

∫ ∞

0

dω
√

∆2
s − ω2 arccos

(

ω

∆s

)

1 + exp[−8πρsω/T ]

(1 + exp[−2ω/T ])2

× exp

(

−∆s

T

[

ω

∆s

(

1− 8ρs arccos

(

ω

∆s

))

+ 8ρs

√

1− (ω/∆s)
2

])

, (246)

where χ0 = 2µ2
Bρ0. For ρs > ρ0/4 (and T ≪ TMF

c ), the integrand is sharply peaked
at ω = cos(1/8ρs)∆s, such that the integral may be evaluated by a saddle point
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integration, resulting in

χ(T )

χ0
∼
√

π

ρs

(

sin(1/8ρs)∆s

T

)3/2

exp

(

−8ρs sin(1/8ρs)∆s

T

)

,

T ≪ 4ρs∆s (1− cos(1/8ρs))
3/2

.

(247)

Note, that the temperature restriction is necessary for the asymptotic expansion of
the DOS to be valid. Although the susceptibility χ(T ) vanishes exponentially, the
exponent 8ρs sin(1/8ρs)∆s/T is smaller than the exponent 8ρs∆s/T , which governs
the DOS at the Fermi energy. However, as ρs approaches ρ0/4, the two exponents
become identical, such that for ρs ≤ ρ0/4 the DOS and the susceptibility have the
same exponential dependence on T .

A numerical evaluation of the susceptibility χ(T )/χ0 for ξ(T ) = ρs(T )/T given by
Eq. (37) and ∆s(T ) determined by the BCS gap equation (38) is shown in Fig. 16.
For a comparison, we have also plotted the DOS ρ(0)/ρ0 as a function of temperature.
The two are not identical because for small temperatures (and ρs = ρ0), the major
contribution to the integral in Eq. (245) comes from the frequency region just below ∆s.
In Fig. 16, we also show susceptibility data taken from Ref. [82] for incommensurate
quasi one-dimensional conductors which undergo a Pererls transition.

It is quite surprising that our plot of the susceptibility is very similar to the plot
obtained by Lee, Rice and Anderson [9] which perfectly fits experimental data [8,
81, 82]. However, to explain experimental data, Lee, Rice and Anderson [9] had to
base their calculations on a real order parameter with a correlation length which
for low temperatures increases exponentially as the temperature is lowered. Only
the exponentially increasing correlation length of a real order parameter could lead
to an exponentially decreasing susceptibility and the prediction of T 3D

c ≈ TMF
c /4.

Here, we have shown that these predictions should also hold for a complex order
parameter with a correlation length which increases as 1/T . Since most Peierls chains
are incommensurate and the susceptibility of many incommensurate Peierls chains
has been compared with the theory by Lee, Rice and Anderson [9], our results are
of major experimental relevance. For a comparison between theory and experiment,
it should be recalled that we have only used a strictly one-dimensional model with
phase fluctuations only. At higher temperatures, one should also include amplitude
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fluctuations.

5.3.3 Thermodynamic quantities

The DOS encapsulates the whole thermodynamics. Let us first consider the electronic
free energy Fel(T ) with respect to the gapped state for which we have ρ∞(ω) =
ρ0 θ(ω

2 −∆2
s) |ω|/(ω2 −∆2

s):

Fel(T )− F ξ=∞
el (T ) = −sL

β

∫ ∞

−∞
dω [ρ(ω)− ρ∞(ω)] ln

(

1 + e−βω
)

. (248)

Partial integration leads to

Fel(T )− F ξ=∞
el (T ) = −sL

∫

dω [N (ω)−N∞(ω)]
1

eβω + 1

= sρ0L Im

∫

dω [Γ(ω)− Γ∞(ω)]
1

eβω + 1
, (249)

where Γ(ω) = ℓ−1(ω)− iπN (ω) and Γ∞(ω) =
√

∆2
s − (ω + i0)2. The square root has

to be taken such that Γ∞(ω) → −iω for ω → ∞. Since Γ(ω) is analytic in the upper
half plane, the integral may be done by closing the integral in the upper half plane
and using the residue theorem. We find

Fel(T )− F ξ=∞
el (T ) = −sρ0L

2π

β

∑

ω̃n>0

[Re Γ(iω̃n)− ω̃n] . (250)

For the FGM with phase fluctuations only, we obtain by placing Eq. (237) into this
equation

Fel(T )− F ξ=∞
el (T ) = sρ0L∆s

2π

β

∑

ω̃n>0





√

1 +

(

ω̃n

∆s

)2

−
I ′4ω̃nξ

(4∆sξ)

I4ω̃nξ (4∆sξ)



 . (251)

Up to an irrelevant additive constant, F ξ=∞
el (T ) is given by

F ξ=∞
el (T ) = −sρ0L2∆2

s

∫ ∞

1

du
√

u2 − 1
1

e∆su/T + 1
, (252)

which for small temperatures is exponentially small:

F ξ=∞
el (T ) ∼ −sρ0L

√
2π∆2

s e
−∆s/T , T ≪ ∆s . (253)

While in the general case we have to add Eqs. (251) and (252) to get the free energy
Fel(T ), for low temperatures we can neglect the exponentially small contribution given
by Eq. (253), such that Fel(T ) is determined by the right-hand side of Eq. (251).

For T ≪ TMF
c , the dimensionless correlation length ∆sξ is large, and a uniform

asymptotic expansion of Iν(νz) and I
′
ν(νz) [see A&S, Eqs. (9.7.7) and (9.7.9)] can be

used to find for the leading terms of the free energy

Fel(T ) ∼ sρ0L∆
2
s

[

π

4

1

4∆sξ
− 1

12

1

(4∆sξ)2

]

. (254)
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Electronic specific heat

An experimentally accessible thermodynamic quantity is the electronic specific heat
which can be expressed in terms of the free energy as

Cel(T ) = −T d2Fel(T )

dT 2
. (255)

The low-temperature behavior of Cel(T ) can be obtained from Eq. (254): Using ξ(T ) =
sρs(0)/2T , it directly follows

Cel(T ) ∼
1

8

(

ρ0
sρs(0)

)2

C0
el(T ) , (256)

where the specific heat of free electrons is given by

C0
el(T ) = s

π2

3
ρ0LT . (257)

Although the DOS exhibits a pseudogap and vanishes exponentially near the Fermi
energy as the temperature is lowered, the electronic specific heat Cel(T ) vanishes only
linearly in T , as for free electrons.

We conclude this section with a summary of the central results of the FGM valid
at low temperatures where phase fluctuations dominate in Table 1.

Table 1 Asymptotic low temperature results for the FGM describing electrons with spin.
Note that we have reintroduced the Fermi velocity vF and note also that the mean-field
critical temperature TMF

c serves as the only energy scale. For generalizations of the formulas
see the text.

superfluid density ρs(T ) ∼ ρ0 =
1

πvF

correlation length ξ(T ) ∼ vF
πT

density of states
ρ(0)

ρ0
∼ 14.1TMF

c

T
exp

(

−4.49TMF
c

T

)

inverse localization length ℓ−1(0) ∼ 1.76TMF
c

vF

susceptibility
χ(T )

χ0
∼ 1.74

(

TMF
c

T

)3/2

exp

(

−1.72TMF
c

T

)

electronic specific heat
Cel(T )

C0
el(T )

∼ 1

32
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6 Conclusion

In this work, we have discussed the density of states (DOS) of the fluctuating gap
model (FGM) and related quantities like the inverse localization length, the Pauli
paramagnetic susceptibility and the low-temperature specific heat. We introduced the
FGM as an effective low-energy model describing the electronic properties of Peierls
chains and emphasized the fact that the FGM also finds its applications in other
physical contexts: Spin chains can be mapped by a Jordan-Wigner transformation
onto the FGM and in order to explain the pseudogap-phenomenon in underdoped
cuprates above a phase transition, higher-dimensional generalizations of the FGM
have been used.

With the rediscovery of the FGM in the context of high-temperature superconduc-
tivity, a previously unnoticed subtle error in Sadovskii’s widely used Green function
of the FGM was brought to light. This error called for a reinvestigation of the FGM.

After setting up a non-perturbative theory which, in principle, allows to express
the one-particle Green function as a functional of an arbitrary given realization of the
disorder, we derived a simple equation of motion whose solution determines the DOS
and the inverse localization length. Starting from this equation, we could rederive all
known results for the FGM in the white noise limit.

Considering the equation of motion governed by the phase which determines the
DOS, we argued that the Dyson singularity found in the white noise limit for com-
mensurate Peierls chains should not be an artifact of the white noise limit, but should
be present for any finite correlation length in contradiction to Sadovskii’s solution.
Our following numerical calculation of the DOS and inverse localization length con-
firmed this prediction and showed also that for large correlation lengths, the Dyson
singularity only overshadows a pseudogap. Although Sadovskii’s algorithm misses this
singularity, his solutions for the incommensurate case where there are no singularities
in the DOS give a fairly good approximation to the exact result.

In the pseudogap-regime below the mean-field critical temperature, fluctuations of
the order parameter cannot be described by Gaussian statistics. Instead, as the tem-
perature is lowered, amplitude fluctuations get gradually frozen out, and the amplitude
takes on a value given by the minimum of the Ginzburg-Landau functional and only
long-wavelength gapless phase fluctuations survive. Using a gauge transformation to
map the phase fluctuations of the order parameter onto an effective forward scatter-
ing potential, we could even find an exact solution for the FGM involving only phase
fluctuations which should be valid in the low temperature regime. We found that the
low-temperature specific heat is linear in T and that both the DOS at the Fermi energy
and the Pauli paramagnetic susceptibility vanish exponentially as the temperature T
is lowered, the ratio of the former to the latter also vanishing exponentially. The Pauli
paramagnetic susceptibility has been measured in various experiments and is in good
agreement with our results.

Having discussed quantities related to the DOS, one would also like to calculate
quantities like the spectral function. This has been done for a special non-Gaussian
probability distribution involving amplitude and phase fluctuations in Ref. [52], but
accurate results for realistic probability distributions (e.g. for phase fluctuations only)
are not known yet.
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