21 research outputs found

    Tissue-specific gene silencing monitored in circulating RNA

    Get PDF
    Pharmacologic target gene modulation is the primary objective for RNA antagonist strategies and gene therapy. Here we show that mRNAs encoding tissue-specific gene transcripts can be detected in biological fluids and that RNAi-mediated target gene silencing in the liver and brain results in quantitative reductions in serum and cerebrospinal fluid mRNA levels, respectively. Further, administration of an anti-miRNA oligonucleotide resulted in decreased levels of the miRNA in circulation. Moreover, ectopic expression of an adenoviral transgene in the liver was quantified based on measurement of serum mRNA levels. This noninvasive method for monitoring tissue-specific RNA modulation could greatly advance the clinical development of RNA-based therapeutics

    α-Synuclein Suppression by Targeted Small Interfering RNA in the Primate Substantia Nigra

    Get PDF
    The protein α-synuclein is involved in the pathogenesis of Parkinson's disease and other neurodegenerative disorders. Its toxic potential appears to be enhanced by increased protein expression, providing a compelling rationale for therapeutic strategies aimed at reducing neuronal α-synuclein burden. Here, feasibility and safety of α-synuclein suppression were evaluated by treating monkeys with small interfering RNA (siRNA) directed against α-synuclein. The siRNA molecule was chemically modified to prevent degradation by exo- and endonucleases and directly infused into the left substantia nigra. Results compared levels of α-synuclein mRNA and protein in the infused (left) vs. untreated (right) hemisphere and revealed a significant 40–50% suppression of α-synuclein expression. These findings could not be attributable to non-specific effects of siRNA infusion since treatment of a separate set of animals with luciferase-targeting siRNA produced no changes in α-synuclein. Infusion with α-synuclein siRNA, while lowering α-synuclein expression, had no overt adverse consequences. In particular, it did not cause tissue inflammation and did not change (i) the number and phenotype of nigral dopaminergic neurons, and (ii) the concentrations of striatal dopamine and its metabolites. The data represent the first evidence of successful anti-α-synuclein intervention in the primate substantia nigra and support further development of RNA interference-based therapeutics

    Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles

    Get PDF
    Therapeutics that are designed to engage RNA interference (RNAi) pathways have the potential to provide new, major ways of imparting therapy to patients. Long, double-stranded RNAs were first shown to mediate RNAi in Caenorhabditis elegans, and the potential use of RNAi for human therapy has been demonstrated by the finding that small interfering RNAs (siRNAs; approximately 21-base-pair double-stranded RNA) can elicit RNAi in mammalian cells without producing an interferon response. We are at present conducting the first in-human phase I clinical trial involving the systemic administration of siRNA to patients with solid cancers using a targeted, nanoparticle delivery system. Here we provide evidence of inducing an RNAi mechanism of action in a human from the delivered siRNA. Tumour biopsies from melanoma patients obtained after treatment show the presence of intracellularly localized nanoparticles in amounts that correlate with dose levels of the nanoparticles administered (this is, to our knowledge, a first for systemically delivered nanoparticles of any kind). Furthermore, a reduction was found in both the specific messenger RNA (M2 subunit of ribonucleotide reductase (RRM2)) and the protein (RRM2) levels when compared to pre-dosing tissue. Most notably, we detect the presence of an mRNA fragment that demonstrates that siRNA-mediated mRNA cleavage occurs specifically at the site predicted for an RNAi mechanism from a patient who received the highest dose of the nanoparticles. Together, these data demonstrate that siRNA administered systemically to a human can produce a specific gene inhibition (reduction in mRNA and protein) by an RNAi mechanism of action

    Treatment of squirrel monkeys with siRNA.

    No full text
    <p>Animals were unilaterally implanted with a cannula connected to an Alzet minipump delivering siRNA into the left substantia nigra. (<b>A</b>) Sequence of the α-synuclein siRNA. “A,C,G,U” indicate ribonucleotides, “T” designates deoxythymidine, “c” and “u” specify 2′-O-Me-modified pyrimidines and “s” denotes a phosphorothioate linkage. (<b>B</b>) Midbrain sections were immunostained for tyrosine hydroxylase (brown) and counterstained with cresyl violet (purple). A representative section shows placement of the cannula approximately 1 mm dorsal to the substantia nigra (SN). The location of the cannula is indicated by the square box, and the asterisk denotes the exit of the third nerve. Scale bar = 800 µm.</p

    The number of nigral dopaminergic neurons is not affected by siRNA-induced α-synuclein suppression.

    No full text
    <p>Squirrel monkeys received a unilateral nigral infusion of siRNA targeting α-synuclein. Both the number of TH-immunoreactive cells and the total number of dopaminergic neurons were counted stereologically in the substantia nigra. Values (mean ± SEM) were not different between the right (untreated) and left (siRNA-infused) hemisphere.</p

    Reduction of α-synuclein mRNA in the substantia nigra infused with α-synuclein siRNA.

    No full text
    <p>Squirrel monkeys received a unilateral nigral infusion of siRNA targeting α-synuclein (<b>A</b>) or luciferase (<b>B</b>). Midbrain sections at the level of the exit of the 3<sup>rd</sup> nerve were used for α-synuclein <i>in situ</i> hybridization using digoxigenin-labeled antisense riboprobes. Representative images compare α-synuclein mRNA in the right (untreated) <i>vs.</i> left (siRNA-infused) substantia nigra. Scale bar = 100 µm.</p

    Effect of α-synuclein siRNA on α-synuclein protein in the monkey substantia nigra.

    No full text
    <p>α-Synuclein or luciferase siRNA was unilaterally infused into the left substantia nigra. Midbrain sections were immunostained with an antibody against α-synuclein. Representative images from an animal receiving α-synuclein siRNA show more robust α-synuclein immunoreactivity within the neuropil of the right (untreated, <b>A</b>) <i>vs.</i> left (siRNA-infused, <b>B</b>) substantia nigra. Scale bar = 5 µm. (<b>C</b>) Optical density measurements of nigral α-synuclein immunoreactivity. Data are expressed as percent of the control value in the right (untreated) substantia nigra and represent mean ± SEM. A significant decrease is caused by α-synuclein but not luciferase siRNA in the left (siRNA-infused) hemisphere. *p<0.03.</p
    corecore