14 research outputs found

    Thermo-hydro-mechanical simulation of a full-scale steel-lined micro-tunnel excavated in the callovooxfordian claystone

    Get PDF
    The paper presents an interpretation of the full-scale ALC1604 in situ heating test carried out in Callovo-Oxfordian claystone (COx) in the Meuse/Haute-Marne underground research laboratory (MHM URL). The MHM URL is a site-specific facility planned to study radioactive waste disposal in the COx. The thermo-hydro-mechanical (THM) behaviour of the host rock is significant for the design of the underground radioactive waste disposal facility and for its long-term safety. When subjected to thermal loading, the Callovo-Oxfordian claystone of low permeability (~10-20-10-21 m2) exhibits a strong pore pressure response that significantly affects the hydraulic and mechanical behaviour of the material. The observations gathered in the in situ test have provided an opportunity to examine the integrated thermo-hydromechanical (THM) response of this sedimentary clay. Coupled THM numerical analyses have been carried out to provide a structured framework for interpretation, and to enhance understanding of THM behaviour of COx. Numerical analyses have been based on a coupled theoretical formulation that incorporates a constitutive law specially developed for this type of material. The law includes a number of features that are relevant for a satisfactory description of the hydromechanical behaviour. By performing the numerical analysis, it has been possible to incorporate anisotropy of material parameters and of in situ stresses. The performance and analysis of the in situ tests have significantly enhanced the understanding of a complex THM problem and have proved the capability of the numerical formulation to provide adequate predictive capacity

    Coupled THM analysis of long-term anisotropic convergence in the full-scale micro tunnel excavated in the Callovo-Oxfordian argillite

    Get PDF
    The main purpose of this paper is to analyse the convergence measurements of the ALC1604 in situ heating test carried out in the Callovo-Oxfordian claystone formation (COx) in the Meuse/Haute-Marne underground research laboratory (MHM URL). The concept of the test consists of horizontal micro-tunnel, equipped with a steel casing. The micro-tunnel is excavated in the direction of the horizontal principal major stress (sH). In situ observations showed anisotropic convergence with the maximum and minimum values in the horizontal and vertical directions, respectively. Coupled THM numerical analyses have been carried out to provide a structured framework for interpretation, and to enhance understanding of THM behaviour of Callovo-Oxfordian claystone. However, a special mechanical constitutive law is adopted for the description of the time-dependent anisotropic behaviour of the COx. The simulation of the test using this enhanced model provides a satisfactory reproduction of the THM long-term anisotropic convergence results. It also provides a better understanding of the observed test response.Postprint (published version

    Coupled thm analysis of long-term anisotropic convergence in the full-scale micro tunnel excavated in the callovo-oxfordian argillite

    Get PDF
    The main purpose of this paper is to analyse the convergence measurements of the ALC1604 in situ heating test carried out in the Callovo-Oxfordian claystone formation (COx) in the Meuse/Haute-Marne underground research laboratory (MHM URL). The concept of the test consists of horizontal micro-tunnel, equipped with a steel casing. The micro-tunnel is excavated in the direction of the horizontal principal major stress (σH). In situ observations showed anisotropic convergence with the maximum and minimum values in the horizontal and vertical directions, respectively. Coupled THM numerical analyses have been carried out to provide a structured framework for interpretation, and to enhance understanding of THM behaviour of Callovo-Oxfordian claystone. However, a special mechanical constitutive law is adopted for the description of the time-dependent anisotropic behaviour of the COx. The simulation of the test using this enhanced model provides a satisfactory reproduction of the THM long-term anisotropic convergence results. It also provides a better understanding of the observed test response

    Thermo-hydro-mechanical simulation of a full-scale steel-lined micro-tunnel excavated in the Callovo-Oxfordian claystone

    Get PDF
    The paper presents an interpretation of the full-scale ALC1604 in situ heating test carried out in Callovo-Oxfordian claystone (COx) in the Meuse/Haute-Marne underground research laboratory (MHM URL). The MHM URL is a site-specific facility planned to study radioactive waste disposal in the COx. The thermo-hydro-mechanical (THM) behaviour of the host rock is significant for the design of the underground radioactive waste disposal facility and for its long-term safety. When subjected to thermal loading, the Callovo-Oxfordian claystone of low permeability (~10-20-10-21 m2) exhibits a strong pore pressure response that significantly affects the hydraulic and mechanical behaviour of the material. The observations gathered in the in situ test have provided an opportunity to examine the integrated thermo-hydro-mechanical (THM) response of this sedimentary clay. Coupled THM numerical analyses have been carried out to provide a structured framework for interpretation, and to enhance understanding of THM behaviour of COx. Numerical analyses have been based on a coupled theoretical formulation that incorporates a constitutive law specially developed for this type of material. The law includes a number of features that are relevant for a satisfactory description of the hydromechanical behaviour. By performing the numerical analysis, it has been possible to incorporate anisotropy of material parameters and of in situ stresses. The performance and analysis of the in situ tests have significantly enhanced the understanding of a complex THM problem and have proved the capability of the numerical formulation to provide adequate predictive capacity.Postprint (published version

    Thermo-hydro-mechanical simulation of a full-scale steel-lined micro-tunnel excavated in the callovooxfordian claystone

    No full text
    The paper presents an interpretation of the full-scale ALC1604 in situ heating test carried out in Callovo-Oxfordian claystone (COx) in the Meuse/Haute-Marne underground research laboratory (MHM URL). The MHM URL is a site-specific facility planned to study radioactive waste disposal in the COx. The thermo-hydro-mechanical (THM) behaviour of the host rock is significant for the design of the underground radioactive waste disposal facility and for its long-term safety. When subjected to thermal loading, the Callovo-Oxfordian claystone of low permeability (~10-20-10-21 m2) exhibits a strong pore pressure response that significantly affects the hydraulic and mechanical behaviour of the material. The observations gathered in the in situ test have provided an opportunity to examine the integrated thermo-hydromechanical (THM) response of this sedimentary clay. Coupled THM numerical analyses have been carried out to provide a structured framework for interpretation, and to enhance understanding of THM behaviour of COx. Numerical analyses have been based on a coupled theoretical formulation that incorporates a constitutive law specially developed for this type of material. The law includes a number of features that are relevant for a satisfactory description of the hydromechanical behaviour. By performing the numerical analysis, it has been possible to incorporate anisotropy of material parameters and of in situ stresses. The performance and analysis of the in situ tests have significantly enhanced the understanding of a complex THM problem and have proved the capability of the numerical formulation to provide adequate predictive capacity

    Thermo-hydro-mechanical simulation of a full-scale steel-lined micro-tunnel excavated in the Callovo-Oxfordian claystone

    No full text
    The paper presents an interpretation of the full-scale ALC1604 in situ heating test carried out in Callovo-Oxfordian claystone (COx) in the Meuse/Haute-Marne underground research laboratory (MHM URL). The MHM URL is a site-specific facility planned to study radioactive waste disposal in the COx. The thermo-hydro-mechanical (THM) behaviour of the host rock is significant for the design of the underground radioactive waste disposal facility and for its long-term safety. When subjected to thermal loading, the Callovo-Oxfordian claystone of low permeability (~10-20-10-21 m2) exhibits a strong pore pressure response that significantly affects the hydraulic and mechanical behaviour of the material. The observations gathered in the in situ test have provided an opportunity to examine the integrated thermo-hydro-mechanical (THM) response of this sedimentary clay. Coupled THM numerical analyses have been carried out to provide a structured framework for interpretation, and to enhance understanding of THM behaviour of COx. Numerical analyses have been based on a coupled theoretical formulation that incorporates a constitutive law specially developed for this type of material. The law includes a number of features that are relevant for a satisfactory description of the hydromechanical behaviour. By performing the numerical analysis, it has been possible to incorporate anisotropy of material parameters and of in situ stresses. The performance and analysis of the in situ tests have significantly enhanced the understanding of a complex THM problem and have proved the capability of the numerical formulation to provide adequate predictive capacity

    Coupled THM analysis of long-term anisotropic convergence in the full-scale micro tunnel excavated in the Callovo-Oxfordian argillite

    No full text
    The main purpose of this paper is to analyse the convergence measurements of the ALC1604 in situ heating test carried out in the Callovo-Oxfordian claystone formation (COx) in the Meuse/Haute-Marne underground research laboratory (MHM URL). The concept of the test consists of horizontal micro-tunnel, equipped with a steel casing. The micro-tunnel is excavated in the direction of the horizontal principal major stress (sH). In situ observations showed anisotropic convergence with the maximum and minimum values in the horizontal and vertical directions, respectively. Coupled THM numerical analyses have been carried out to provide a structured framework for interpretation, and to enhance understanding of THM behaviour of Callovo-Oxfordian claystone. However, a special mechanical constitutive law is adopted for the description of the time-dependent anisotropic behaviour of the COx. The simulation of the test using this enhanced model provides a satisfactory reproduction of the THM long-term anisotropic convergence results. It also provides a better understanding of the observed test response

    A full-scale in situ heating test in Callovo-Oxfordian claystone: observations, analysis and interpretation

    No full text
    The paper describes the performance, observations and numerical interpretation of a full-scale in situ heating test conducted on Callovo-Oxfordian (COx) claystone in the Meuse / Haute-Marne (MHM) Underground Research Laboratory (URL) simulating a heat-emitting, high-level radioactive waste disposal concept. In the experiment, five heaters 3 m-long are placed in the axis of a microtunnel excavated in COx claystone to simulate the heat production of radioactive waste. The test is fully instrumented, and attention is focused on the near-field region's thermo-hydro-mechanical (THM) behaviour consisting of the casing surrounding the heater and the host formation (COx claystone). The interpretation of the test is assisted by the performance of a numerical analysis based on a coupled formulation incorporating the relevant THM phenomena. The calculations have used a constitutive law especially developed for this type of material. Initial and boundary conditions for analysis as well as material parameters are determined from a comprehensive field and laboratory experimental programme. The paper presents and discusses the thermal, hydraulic and mechanical observations in COx claystone, casing and an annular air-filled gap between the host formation and the casing. Special attention is also paid to the mechanisms involved in the interface between the rock and the casing. Heating has been applied in two stages; a cooling stage (also applied in steps) completes the experiment. The numerical analysis performed has proved able to represent the progress of the experiment very satisfactorily. By performing the 3D numerical analysis, it has been possible to incorporate anisotropies of material parameters and of in situ stresses. The performance and analysis of the in situ test have significantly enhanced the understanding of a complex THM problem and have proved the capability of the numerical formulation to provide adequate modelling capacity.The technical and financial support of the Agence Nationale pour la Gestion des Déchets Radioactifs (ANDRA) is gratefully acknowledged.Peer ReviewedPostprint (author's final draft
    corecore