6 research outputs found
Subfunctionalization of expression and peptide domains following the ancient duplication of the proopiomelanocortin gene in teleost fishes
The proopiomelanocortin gene (POMC) encodes several bioactive peptides, including adrenocorticotropin hormone, α-, β-, and γ-melanocyte-stimulating hormone, and the opioid peptide β-endorphin, which play key roles in vertebrate physiology. In the human, mouse, and chicken genomes, there is only one POMC gene. By searching public genome projects, we have found that Tetraodon (Tetraodon nigroviridis), Fugu (Takifugu rubripes), and zebrafish (Danio rerio) possess two POMC genes, which we called POMCα and POMCβ, and we present phylogenetic and mapping evidence that these paralogue genes originated in the whole-genome duplication specific to the teleost lineage over 300 MYA. In addition, we present evidence for two types of subfunction partitioning between the paralogues. First, in situ hybridization experiments indicate that the expression domains of the ancestral POMC gene have been subfunctionalized in Tetraodon, with POMCα expressed in the nucleus lateralis tuberis of the hypothalamus, as well as in the rostral pars distalis and pars intermedia (PI) of the pituitary, whereas POMCβ is expressed in the preoptic area of the brain and weakly in the pituitary PI. Second, POMCβ genes have a β-endorphin segment that lacks the consensus opioid signal and seems to be under neutral evolution in tetraodontids, whereas POMCα genes possess well-conserved peptide regions. Thus, POMC paralogues have experienced subfunctionalization of both expression and peptide domains during teleost evolution. The study of regulatory regions of fish POMC genes might shed light on the mechanisms of enhancer partitioning between duplicate genes, as well as the roles of POMC-derived peptides in fish physiology.Fil:Rubinstein, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Ancient exaptation of a CORE-SINE retroposon into a highly conserved mammalian neuronal enhancer of the proopiomelanocortin gene
The proopiomelanocortin gene (POMC) is expressed in the pituitary gland and the ventral hypothalamus of all jawed vertebrates, producing several bioactive peptides that function as peripheral hormones or central neuropeptides, respectively. We have recently determined that mouse and human POMC expression in the hypothalamus is conferred by the action of two 5′ distal and unrelated enhancers, nPE1 and nPE2. To investigate the evolutionary origin of the neuronal enhancer nPE2, we searched available vertebrate genome databases and determined that nPE2 is a highly conserved element in placentals, marsupials, and monotremes, whereas it is absent in nonmammalian vertebrates. Following an in silico paleogenomic strategy based on genome-wide searches for paralog sequences, we discovered that opossum and wallaby nPE2 sequences are highly similar to members of the superfamily of CORE-short interspersed nucleotide element (SINE) retroposons, in particular to MAR1 retroposons that are widely present in marsupial genomes. Thus, the neuronal enhancer nPE2 originated from the exaptation of a CORE-SINE retroposon in the lineage leading to mammals and remained under purifying selection in all mammalian orders for the last 170 million years. Expression studies performed in transgenic mice showed that two nonadjacent nPE2 subregions are essential to drive reporter gene expression into POMC hypothalamic neurons, providing the first functional example of an exapted enhancer derived from an ancient CORE-SINE retroposon. In addition, we found that this CORE-SINE family of retroposons is likely to still be active in American and Australian marsupial genomes and that several highly conserved exonic, intronic and intergenic sequences in the human genome originated from the exaptation of CORESINE retroposons. Together, our results provide clear evidence of the functional novelties that transposed elements contributed to their host genomes throughout evolution. © 2007 Santangelo et al.Fil:Santangelo, A.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Rubinstein, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Subfunctionalization of expression and peptide domains following the ancient duplication of the proopiomelanocortin gene in teleost fishes
The proopiomelanocortin gene (POMC) encodes several bioactive peptides, including adrenocorticotropin hormone, α-, β-, and γ-melanocyte-stimulating hormone, and the opioid peptide β-endorphin, which play key roles in vertebrate physiology. In the human, mouse, and chicken genomes, there is only one POMC gene. By searching public genome projects, we have found that Tetraodon (Tetraodon nigroviridis), Fugu (Takifugu rubripes), and zebrafish (Danio rerio) possess two POMC genes, which we called POMCα and POMCβ, and we present phylogenetic and mapping evidence that these paralogue genes originated in the whole-genome duplication specific to the teleost lineage over 300 MYA. In addition, we present evidence for two types of subfunction partitioning between the paralogues. First, in situ hybridization experiments indicate that the expression domains of the ancestral POMC gene have been subfunctionalized in Tetraodon, with POMCα expressed in the nucleus lateralis tuberis of the hypothalamus, as well as in the rostral pars distalis and pars intermedia (PI) of the pituitary, whereas POMCβ is expressed in the preoptic area of the brain and weakly in the pituitary PI. Second, POMCβ genes have a β-endorphin segment that lacks the consensus opioid signal and seems to be under neutral evolution in tetraodontids, whereas POMCα genes possess well-conserved peptide regions. Thus, POMC paralogues have experienced subfunctionalization of both expression and peptide domains during teleost evolution. The study of regulatory regions of fish POMC genes might shed light on the mechanisms of enhancer partitioning between duplicate genes, as well as the roles of POMC-derived peptides in fish physiology.Fil:Rubinstein, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Herpes simplex virus thymidine kinase/ganciclovir system in multicellular tumor spheroids
We have developed multicellular spheroids (MCS) established from LM05e and LM3 spontaneous Balb/c-murine mammary adenocarcinoma and B16 C57-murine melanoma derived cell lines as an in vitro model to study the efficacy of the herpes simplex virus thymidine kinase/ganciclovir (HSVtk/GCV) suicide system. We demonstrated for the first time that HSVtk-expressing cells assembled as MCS manifested a GCV resistance phenotype compared to the same cells grown as sparse monolayers. HSVtk-expressing LM05e, LM3 and B16 spheroids were 16-, three- and nine-fold less sensitive to GCV than their respective monolayers, even though they could express transgenes 10-, eight- and five-fold more efficiently. Mixed populations of HSVtk- and their respective βgal-expressing cells displayed a cell-type specific bystander effect that was higher in monolayers than in MCS. However, HSVtk-expressing cells in two- or three-dimensional cultures were always significantly more sensitive to GCV than the βgal-expressing counterparts, supporting the feasibility of this suicide approach in vivo. We present evidence showing that HSVtk-expressing tumor cells, when transferred from monolayers to MCS, displayed: (i) lower GCV cytotoxic activity and bystander effect; (ii) higher and efficient expression of genes transferred as lipoplexes; (iii) lower cell proliferation rates; and (iv) changes in intracellular Bax/Bcl-xL rheostat of mitochondria-mediated apoptosis.Fil:Finocchiaro, L.M.E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Casais, C.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Glikin, G.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Ancient exaptation of a CORE-SINE retroposon into a highly conserved mammalian neuronal enhancer of the proopiomelanocortin gene
The proopiomelanocortin gene (POMC) is expressed in the pituitary gland and the ventral hypothalamus of all jawed vertebrates, producing several bioactive peptides that function as peripheral hormones or central neuropeptides, respectively. We have recently determined that mouse and human POMC expression in the hypothalamus is conferred by the action of two 5′ distal and unrelated enhancers, nPE1 and nPE2. To investigate the evolutionary origin of the neuronal enhancer nPE2, we searched available vertebrate genome databases and determined that nPE2 is a highly conserved element in placentals, marsupials, and monotremes, whereas it is absent in nonmammalian vertebrates. Following an in silico paleogenomic strategy based on genome-wide searches for paralog sequences, we discovered that opossum and wallaby nPE2 sequences are highly similar to members of the superfamily of CORE-short interspersed nucleotide element (SINE) retroposons, in particular to MAR1 retroposons that are widely present in marsupial genomes. Thus, the neuronal enhancer nPE2 originated from the exaptation of a CORE-SINE retroposon in the lineage leading to mammals and remained under purifying selection in all mammalian orders for the last 170 million years. Expression studies performed in transgenic mice showed that two nonadjacent nPE2 subregions are essential to drive reporter gene expression into POMC hypothalamic neurons, providing the first functional example of an exapted enhancer derived from an ancient CORE-SINE retroposon. In addition, we found that this CORE-SINE family of retroposons is likely to still be active in American and Australian marsupial genomes and that several highly conserved exonic, intronic and intergenic sequences in the human genome originated from the exaptation of CORESINE retroposons. Together, our results provide clear evidence of the functional novelties that transposed elements contributed to their host genomes throughout evolution. © 2007 Santangelo et al.Fil:Santangelo, A.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Rubinstein, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Transcriptional regulation of pituitary POMC is conserved at the vertebrate extremes despite great promoter sequence divergence
The stress response involves complex physiological mechanisms that maximize behavioral efficacy during attack or defense and is highly conserved in all vertebrates. Key mediators of the stress response are pituitary hormones encoded by the proopiomelanocortin gene (POMC). Despite conservation of physiological function and expression pattern of POMC in all vertebrates, phylogenetic footprinting analyses at the POMC locus across vertebrates failed to detect conserved noncoding sequences with potential regulatory function. To investigate whether ortholog POMC promoters from extremely distant vertebrates are functionally conserved, we used 5′-flanking sequences of the teleost fish Tetraodon nigroviridis POMCα gene to produce transgenic mice. Tetraodon POMCα promoter targeted reporter gene expression exclusively to mouse pituitary cells that normally express Pomc. Importantly, transgenic expression in mouse corticotrophs was increased after adrenalectomy. To understand how conservation of precise gene expression mechanisms coexists with great sequence divergence, we investigated whether very short elements are still conserved in all vertebrate POMC promoters. Multiple local sequence alignments that consider phylogenetic relationships of ortholog regions identified a unique 10-bp motif GTGCTAA(T/G)CC that is usually present in two copies in POMC 5′-flanking sequences of all vertebrates. Underlined nucleotides represent totally conserved sequences. Deletion of these paired motifs from Tetraodon POMCα promoter markedly reduced its transcriptional activity in a mouse corticotropic cell line and in pituitary POMC cells of transgenic mice. In mammals, the conserved motifs correspond to reported binding sites for pituitary-specific nuclear proteins that participate in POMC transcriptional regulation. Together, these results demonstrate that mechanisms that participate in pituitary-specific and hormonally regulated expression of POMC have been preserved since mammals and teleosts diverged from a common ancestor 450 million years ago despite great promoter sequence divergence. Copyright © 2007 by The Endocrine Society.Fil:Santangelo, A.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Rubinstein, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina