5 research outputs found

    Quantum communication networks with optical vortices

    Full text link
    Quantum communications bring a paradigm change in internet security by using quantum resources to establish secure keys between parties. Present-day quantum communications networks are mainly point-to-point and use trusted nodes and key management systems to relay the keys. Future quantum networks, including the quantum internet, will have complex topologies in which groups of users are connected and communicate with each-other. Here we investigate several architectures for quantum communication networks. We show that photonic orbital angular momentum (OAM) can be used to route quantum information between different nodes. Starting from a simple, point-to-point network, we will gradually develop more complex architectures: point-to-multipoint, fully-connected and entanglement-distribution networks. As a particularly important result, we show that an nn-node, fully-connected network can be constructed with a single OAM sorter and n1n-1 OAM values. Our results pave the way to construct complex quantum communication networks with minimal resources.Comment: 10 pages, 9 figure

    Alternative Aviation Fuel Experiment (AAFEX)

    Get PDF
    The rising cost of oil coupled with the need to reduce pollution and dependence on foreign suppliers has spurred great interest and activity in developing alternative aviation fuels. Although a variety of fuels have been produced that have similar properties to standard Jet A, detailed studies are required to ascertain the exact impacts of the fuels on engine operation and exhaust composition. In response to this need, NASA acquired and burned a variety of alternative aviation fuel mixtures in the Dryden Flight Research Center DC-8 to assess changes in the aircraft s CFM-56 engine performance and emission parameters relative to operation with standard JP-8. This Alternative Aviation Fuel Experiment, or AAFEX, was conducted at NASA Dryden s Aircraft Operations Facility (DAOF) in Palmdale, California, from January 19 to February 3, 2009 and specifically sought to establish fuel matrix effects on: 1) engine and exhaust gas temperatures and compressor speeds; 2) engine and auxiliary power unit (APU) gas phase and particle emissions and characteristics; and 3) volatile aerosol formation in aging exhaust plume
    corecore