216 research outputs found
Comparative Analysis of Muscle Transcriptome between Pig Genotypes Identifies Genes and Regulatory Mechanisms Associated to Growth, Fatness and Metabolism.
Iberian ham production includes both purebred (IB) and Duroc-crossbred (IBxDU) Iberian pigs, which show important differences in meat quality and production traits, such as muscle growth and fatness. This experiment was conducted to investigate gene expression differences, transcriptional regulation and genetic polymorphisms that could be associated with the observed phenotypic differences between IB and IBxDU pigs. Nine IB and 10 IBxDU pigs were slaughtered at birth. Morphometric measures and blood samples were obtained and samples from Biceps femoris muscle were employed for compositional and transcriptome analysis by RNA-Seq technology. Phenotypic differences were evident at this early age, including greater body size and weight in IBxDU and greater Biceps femoris intramuscular fat and plasma cholesterol content in IB newborns. We detected 149 differentially expressed genes between IB and IBxDU neonates (p < 0.01 and Fold-Change > 1. 5). Several were related to adipose and muscle tissues development (DLK1, FGF21 or UBC). The functional interpretation of the transcriptomic differences revealed enrichment of functions and pathways related to lipid metabolism in IB and to cellular and muscle growth in IBxDU pigs. Protein catabolism, cholesterol biosynthesis and immune system were functions enriched in both genotypes. We identified transcription factors potentially affecting the observed gene expression differences. Some of them have known functions on adipogenesis (CEBPA, EGRs), lipid metabolism (PPARGC1B) and myogenesis (FOXOs, MEF2D, MYOD1), which suggest a key role in the meat quality differences existing between IB and IBxDU hams. We also identified several polymorphisms showing differential segregation between IB and IBxDU pigs. Among them, non-synonymous variants were detected in several transcription factors as PPARGC1B and TRIM63 genes, which could be associated to altered gene function. Taken together, these results provide information about candidate genes, metabolic pathways and genetic polymorphisms potentially involved in phenotypic differences between IB and IBxDU pigs associated to meat quality and production traits
Shock Wave Structure in a Strongly Nonlinear Granular Lattice with Viscous Dissipation
The shock wave structure in a one-dimensional lattice (e.g. granular chain)
with a power law dependence of force on displacement between particles with
viscous dissipation is considered and compared to the corresponding long wave
approximation. A dissipative term depending on the relative velocity between
neighboring particles is included in the discrete model to investigate its
influence on the shape of steady shock profiles. The critical viscosity
coefficient is obtained from the long-wave approximation for arbitrary values
of the exponent n and denotes the transition from an oscillatory to a monotonic
shock profile in stronly nonlinear systems. The expression for the critical
viscosity coefficient converges to the known equation for the critical
viscosity in the weakly nonlinear case. Values of viscosity based on this
expression are comparable to the values obtained in the numerical analysis of a
discrete particle lattice with a Herzian contact interaction corresponding to n
= 3/2. An initial disturbance in a discrete system approaches a stationary
shock profile after traveling a short distance that is comparable to the width
of the leading pulse of a stationary shock front. The shock front width is
minimized when the viscosity is equal to its critical value.Comment: 20 pages, 6 figure
Evaluation of Self-Etching Adhesive and Er:YAG Laser Conditioning on the Shear Bond Strength of Orthodontic Brackets
The purpose of this study was to evaluate the shear bond strength, the adhesive remnant index scores, and etch surface of teeth prepared for orthodontic bracket bonding with self-etching primer and Er:YAG laser conditioning. One hundred and twenty bovine incisors were randomly divided into four groups. In Group I (Control), the teeth were conditioned with 35% phosphoric acid for 15 seconds. In Group II the teeth were conditioned with Transbond Plus SEP (5 sec); III and IV were irradiated with the Er:YAG 150 mJ (11.0 J/cm2), 150 mJ (19.1 J/cm2), respectively, at 7–12 Hz with water spray. After surface preparation, upper central incisor stainless steel brackets were bonded with Transbond Plus Color Change Adhesive. The teeth were stored in water at 37°C for 24 hours and shear bond strengths were measured, and adhesive remnant index (ARI) was determined. The conditioned surface was observed under a scanning electron microscope. One-way ANOVA and chi-square test were used. Group I showed the significantly highest values of bond strength with a mean value of 8.2 megapascals (MPa). The lesser amount of adhesive remnant was found in Group III. The results of this study suggest that Er:YAG laser irradiation could not be an option for enamel conditioning
Dynamics of Lennard-Jones clusters: A characterization of the activation-relaxation technique
The potential energy surface (PES) of Lennard-Jones clusters is investigated
using the activation-relaxation technique (ART). This method defines events in
the configurational energy landscape as a two-step process: (a) a configuration
is first activated from a local minimum to a nearby saddle-point and (b) is
then relaxed to a new minimum. Although ART has been applied with success to a
wide range of materials such as a-Si, a-SiO2 and binary Lennard-Jones glasses,
questions remain regarding the biases of the technique. We address some of
these questions in a detailed study of ART-generated events in Lennard-Jones
(LJ) clusters, a system for which much is already known. In particular, we
study the distribution of saddle-points, the pathways between configurations,
and the reversibility of paths. We find that ART can identify all trajectories
with a first-order saddle point leaving a given minimum, is fully reversible,
and samples events following the Boltzmann weight at the saddle point.Comment: 8 pages, 7 figures in postscrip
Tunability of solitary wave properties in one dimensional strongly nonlinear phononic crystals
One dimentional strongly nonlinear phononic crystals were assembled from
chains of PTFE (polytetrafluoroethylene) and stainless steel spheres with
gauges installed inside the beads. Trains of strongly nonlinear solitary waves
were excited by an impact. A significant modification of the signal shape and
an increase of solitary wave speed up to two times (at the same amplitude of
dynamic contact force)were achieved through a noncontact magnetically induced
precompression of the chains. Data for PTFE based chains are presented for the
first time and data for stainless steel based chains were extended into a
smaller range of amplitudes by more than one order of magnitude than previously
reported. Experimental results were found to be in reasonable agreement with
the long wave approximation and with numerical calculations based on Hertz
interaction law for discrete chains.Comment: 36 pages, 7 figure
Does the timing of pasture allocation affect rumen and plasma metabolites and ghrelin, insulin and cortisol profile in dairy ewes?
A study was undertaken to assess the impact of the timing of grazing on rumen and plasma metabolites and some metabolic hormones in lactating dairy sheep allocated to an Italian ryegrass (Lolium multiflorum Lam) pasture in spring for 4 h/d. Twenty-four mid lactation Sarda ewes stratified for milk yield, body weight, and body condition score, were divided into four homogeneous groups randomly allocated to the treatments (2 replicate groups per treatment). Treatments were morning (AM, from 08:00 to 12:00) and afternoon pasture allocation (PM, from 15:30 to 19:30). Samples of rumen liquor (day 39) and blood plasma (days 17 and 34 of the experimental period) were collected before and after the grazing sessions. Moreover, on days 11 and 35, grazing time was assessed by direct observation and herbage intake measured by the double weighing procedure. Grazing time was longer in PM than AM ewes (P < 0.001) but herbage intake was undifferentiated between groups. The intake of water-soluble carbohydrates at pasture was higher in PM than AM ewes (P < 0.05). The post-grazing propionic and butyric acid concentration, as measured on day 39, were higher in PM than AM ewes (P < 0.05). The basal level of glucose on day 34 and insulin (on both sampling days) were higher in PM than AM (P < 0.05). The opposite trend was detected for non-esterified fatty acids (P < 0.05, day 34) and urea (both days). Pasture allocation in the afternoon rather than in the morning decreased plasma concentration of ghrelin (P < 0.001) and cortisol (P < 0.001), with a smoothed trend on day 34 in the latter variable. To conclude, postponing the pasture allocation to afternoon increased the intake of WSC, favoring a glucogenic pattern of rumen fermentation and a rise of glucose and insulin levels in blood, although these effects were not consistent across the whole experimental period. Moreover, the afternoon grazing decreased the level of cortisol and ghrelin, suggesting a higher satiation-relaxing effect
Selection of young ewe lambs according to their antral follicular count: response to exogenous hormonal stimulation and fertility at first breeding season
Anti-Mullerian Hormone (AMH), Antral Follicular Count (AFC) and the response to exogenous hormonal stimulation have been used, in adults, as suitable markers to determine the ovarian reserve (1-4), to predict oocyte quality (5,6) and a wide variety of fertility indices (6-9). This investigation aims to evaluate if animals selected according to their High or Low AFC at an early prepubertal age show different responses, in the number of follicles and AMH plasma levels, to exogenous hormonal stimulation; to verify whether differences are maintained over time until puberty; and to observe possible variations on fertility at first breeding season
- …