1,676 research outputs found

    MEAN FIELD MODELS FOR MARTENSITIC AND COOPERATIVE JAHN-TELLER TRANSFORMATIONS

    Get PDF
    The validity of mean field models for phase transitions is discussed, and examples are given for dilute random systems of anisotropic defects interacting with long range elastic strain fields. The distribution of internal fields, and not merely the moments, is calculated

    People in different age groups show different hip-joint morphology

    Get PDF
    It has been suggested that the distribution of the subchondral bone density may be regarded as the expression of the long-term effective stress in a joint, and previous results indicate the regularity of the distribution of subchondral bone density as a function of the passing demands made upon a joint. Computed tomography-osteoabsorptiometry has been developed to visualize the area distribution of subchondral mineralization in the major joints in vivo. The purpose of this study was to display the distribution of subchondral bone density in the acetabular cup of patients of different ages. Computer tomography data files of hip joints of 27 patients (18–89 years) were used. Density ranges, image analysis, and area presentation of the distribution of subchondral mineralization are presented. The maximal subchondral mineralization in young persons is found both in the ventral and dorsal part of the acetabular roof. In older people, however, the densest areas are most often found at the zenith of the acetabulum. These morphological results could be well explained by the experimental results of other authors who found a joint incongruity in young persons with contact areas in the ventral and dorsal part of the acetabulum. With advancing age a decrease in incongruence is found, leading to an increased stress in the dome, i.e. in the area where degenerative changes are often found

    Complications associated with introduction of new neuraxial equipment

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86882/1/j.1365-2044.2011.06742.x.pd

    Time-Dependent Symmetries of Variable-Coefficient Evolution Equations and Graded Lie Algebras

    Full text link
    Polynomial-in-time dependent symmetries are analysed for polynomial-in-time dependent evolution equations. Graded Lie algebras, especially Virasoro algebras, are used to construct nonlinear variable-coefficient evolution equations, both in 1+1 dimensions and in 2+1 dimensions, which possess higher-degree polynomial-in-time dependent symmetries. The theory also provides a kind of new realisation of graded Lie algebras. Some illustrative examples are given.Comment: 11 pages, latex, to appear in J. Phys. A: Math. Ge

    Low Gain Avalanche Detectors (LGAD) for particle physics and synchrotron applications

    Get PDF
    A new avalanche silicon detector concept is introduced with a low gain in the region of ten, known as a Low Gain Avalanche Detector, LGAD. The detector's characteristics are simulated via a full process simulation to obtain the required doping profiles which demonstrate the desired operational characteristics of high breakdown voltage (500 V) and a gain of 10 at 200 V reverse bias for X-ray detection. The first low gain avalanche detectors fabricated by Micron Semiconductor Ltd are presented. The doping profiles of the multiplication junctions were measured with SIMS and reproduced by simulating the full fabrication process which enabled further development of the manufacturing process. The detectors are 300 μm thick p-type silicon with a resistivity of 8.5 kΩcm, which fully depletes at 116 V. The current characteristics are presented and demonstrate breakdown voltages in excess of 500 V and a current density of 40 to 100 nAcm−2 before breakdown measured at 20oC. The gain of the LGAD has been measured with a red laser (660 nm) and shown to be between 9 and 12 for an external bias voltage range from 150 V to 300 V

    Josephson junctions with negative second harmonic in the current-phase relation: properties of novel varphi-junctions

    Full text link
    Several recent experiments revealed a change of the sign of the first harmonic in the current-phase relation of Josephson junctions (JJ) based on novel superconductors, e.g., d-wave based or JJ with ferromagnetic barrier. In this situation the role of the second harmonic becomes dominant and it determines the scenario of a 0-pi transition. We discuss different mechanisms of the second harmonic generation and its sign. If the second harmonic is negative the 0-pi transition becomes continuous and the realization of the so-called varphi junction is possible. We study the unusual properties of such a novel JJ and analyze the possible experimental techniques for their observation.Comment: submitted to PR

    Solitons in the Yakushevich model of DNA beyond the contact approximation

    Full text link
    The Yakushevich model of DNA torsion dynamics supports soliton solutions, which are supposed to be of special interest for DNA transcription. In the discussion of the model, one usually adopts the approximation ℓ0→0\ell_0 \to 0, where ℓ0\ell_0 is a parameter related to the equilibrium distance between bases in a Watson-Crick pair. Here we analyze the Yakushevich model without ℓ0→0\ell_0 \to 0. The model still supports soliton solutions indexed by two winding numbers (n,m)(n,m); we discuss in detail the fundamental solitons, corresponding to winding numbers (1,0) and (0,1) respectively

    Luminous Intensity for Traffic Signals: A Scientific Basis for Performance Specifications

    Get PDF
    Humnan factors experiments on visual responses to simulated traffic signals using incandescent lamps and light-emitting diodes are described
    • …
    corecore