4,676 research outputs found
Neurophysiological findings relevant to echolocation in marine animals
A review of echolocation mechanisms in marine mammals, chiefly porpoises, is given. Data cover peripheral auditory and central neurophysiological specializations favorable to the analysis of echolocating clicks and their echoes. Conclusions show (1) signals are received from 50 up to at least 135 kHz, (2) sound is received through the mandible skin, and (3) the midbrain sites are insensitive to low frequencies (below 6 kHz)
Neutral coding - A report based on an NRP work session
Neural coding by impulses and trains on single and multiple channels, and representation of information in nonimpulse carrier
Simple systems for the study of learning mechanisms - A report of an NRP work session, volume 4, number 2, 2-3 June 1965
Actual and potential biological preparations for studying learning mechanisms, with interest centered on insects and mollusk
Polarization of lepton from scalar tau decay as a probe of neutralino mixing
The lepton arising from the scalar tau (\st) decay is naturally
polarized. \ptau depends on the left--right mixing of the \st and the
gaugino--higgsino mixing of the neutralino. The polarization \ptau could be
measured from the energy distribution of the decay products of at future
\epem colliders. A measurement of \ptauand of the \st production cross
section allows to determine both these mixing angles.Comment: 20 pages Latex, 5 figures(not included). compressed ps file of the
figures available at ftp://ftp.kek.jp/kek/preprints/TH/TH-425/fig.ps.g
Neutralino Decays at the CERN LHC
We study the distribution of lepton pairs from the second lightest neutralino
decay \tchi^0_2\to\tchi^0_1 l^+l^-. This decay mode is important to measure the
mass difference between \tchi^0_2 and the lightest neutralino \tchi^0_1, which
helps to determine the parameters of the minimal supersymmetric standard model
at the CERN LHC. We found that the decay distribution strongly depends on the
values of underlying MSSM parameters. For some extreme cases, the amplitude
near the end point of the lepton invariant mass distribution can be suppressed
so strongly that one needs the information of the whole m_{ll} distribution to
extract m_{\tchi^0_2}-m_{\tchi^0_1}. On the other hand, if systematic errors on
the acceptance can be controlled, this distribution can be used to constrain
slepton masses and the Z\tchi^0_2\tchi^0_1 coupling. Measurements of the
velocity distribution of \tchi^0_2 from samples near the end point of the
m_{ll} distribution, and of the asymmetry of the p_T of leptons, would be
useful to reduce the systematic errors.Comment: 23 pages, latex2e, 9 figures, minor change, accepted to PR
3D stellar kinematics at the Galactic center: measuring the nuclear star cluster spatial density profile, black hole mass, and distance
We present 3D kinematic observations of stars within the central 0.5 pc of
the Milky Way nuclear star cluster using adaptive optics imaging and
spectroscopy from the Keck telescopes. Recent observations have shown that the
cluster has a shallower surface density profile than expected for a dynamically
relaxed cusp, leading to important implications for its formation and
evolution. However, the true three dimensional profile of the cluster is
unknown due to the difficulty in de-projecting the stellar number counts. Here,
we use spherical Jeans modeling of individual proper motions and radial
velocities to constrain for the first time, the de-projected spatial density
profile, cluster velocity anisotropy, black hole mass (), and
distance to the Galactic center () simultaneously. We find that the inner
stellar density profile of the late-type stars, to
have a power law slope , much more shallow than
the frequently assumed Bahcall Wolf slope of . The measured
slope will significantly affect dynamical predictions involving the cluster,
such as the dynamical friction time scale. The cluster core must be larger than
0.5 pc, which disfavors some scenarios for its origin. Our measurement of
and
kpc is consistent with that derived from stellar
orbits within 1 of Sgr A*. When combined with the orbit of
S0-2, the uncertainty on is reduced by 30% ( kpc).
We suggest that the MW NSC can be used in the future in combination with
stellar orbits to significantly improve constraints on .Comment: 7 pages, 3 figures, 2 tables, ApJL accepte
- …