60 research outputs found

    Crystal Structure of the P Pilus Rod Subunit PapA

    Get PDF
    P pili are important adhesive fibres involved in kidney infection by uropathogenic Escherichia coli strains. P pili are assembled by the conserved chaperone-usher pathway, which involves the PapD chaperone and the PapC usher. During pilus assembly, subunits are incorporated into the growing fiber via the donor-strand exchange (DSE) mechanism, whereby the chaperone's G1 β-strand that complements the incomplete immunoglobulin-fold of each subunit is displaced by the N-terminal extension (Nte) of an incoming subunit. P pili comprise a helical rod, a tip fibrillum, and an adhesin at the distal end. PapA is the rod subunit and is assembled into a superhelical right-handed structure. Here, we have solved the structure of a ternary complex of PapD bound to PapA through donor-strand complementation, itself bound to another PapA subunit through DSE. This structure provides insight into the structural basis of the DSE reaction involving this important pilus subunit. Using gel filtration chromatography and electron microscopy on a number of PapA Nte mutants, we establish that PapA differs in its mode of assembly compared with other Pap subunits, involving a much larger Nte that encompasses not only the DSE region of the Nte but also the region N-terminal to it. Author Summary. Bacterial adhesion to a host is a crucial step that determines the onset of bacterial infection. It is mediated through recognition of a receptor on the host cell surface by a protein called an adhesin displayed on the surface of the bacterium. Many adhesins are displayed at the tip of specialized organelles called pili, some of which are assembled by the ubiquitous chaperone-usher pathway. In this pathway, each pilus subunit is assisted in folding by a chaperone. The resulting chaperone-subunit complex is targeted to a pore located in the outer membrane, called the usher, that serves as assembly platform. There, pilus subunits dissociate from the chaperone and polymerize, resulting in a surface organelle, the pilus, that protrudes out of the usher. Here, we have determined the structure of the major subunit of the P pilus, PapA. The P pilus, produced in uropathogenic Escherichia coli, displays the adhesin PapG responsible for targeting the bacterium to the kidney epithelium. We have determined the structure of PapA either bound to its cognate chaperone, PapD, or bound to another PapA subunit. These structures provide a view of PapA before and after its assembly in the pilus and shed light on the mechanism of PapA assembly.National Institutes of Health (DE 09761, GM040388, DE 09161); Committee of Scientific Research (3 PO4A 003 24, 2 P05A 137 24); Foundation for Polish Science (SUBSYDIUM PROFESORSKIE award); Swedish Rheumatism Association; Nanna Svartz Foundation; King Gustaf V Foundatio

    Giardia Cyst Wall Protein 1 Is a Lectin That Binds to Curled Fibrils of the GalNAc Homopolymer

    Get PDF
    The infectious and diagnostic stage of Giardia lamblia (also known as G. intestinalis or G. duodenalis) is the cyst. The Giardia cyst wall contains fibrils of a unique β-1,3-linked N-acetylgalactosamine (GalNAc) homopolymer and at least three cyst wall proteins (CWPs) composed of Leu-rich repeats (CWPLRR) and a C-terminal conserved Cys-rich region (CWPCRR). Our goals were to dissect the structure of the cyst wall and determine how it is disrupted during excystation. The intact Giardia cyst wall is thin (~400 nm), easily fractured by sonication, and impermeable to small molecules. Curled fibrils of the GalNAc homopolymer are restricted to a narrow plane and are coated with linear arrays of oval-shaped protein complex. In contrast, cyst walls of Giardia treated with hot alkali to deproteinate fibrils of the GalNAc homopolymer are thick (~1.2 µm), resistant to sonication, and permeable. The deproteinated GalNAc homopolymer, which forms a loose lattice of curled fibrils, is bound by native CWP1 and CWP2, as well as by maltose-binding protein (MBP)-fusions containing the full-length CWP1 or CWP1LRR. In contrast, neither MBP alone nor MBP fused to CWP1CRR bind to the GalNAc homopolymer. Recombinant CWP1 binds to the GalNAc homopolymer within secretory vesicles of Giardia encysting in vitro. Fibrils of the GalNAc homopolymer are exposed during excystation or by treatment of heat-killed cysts with chymotrypsin, while deproteinated fibrils of the GalNAc homopolymer are degraded by extracts of Giardia cysts but not trophozoites. These results show the Leu-rich repeat domain of CWP1 is a lectin that binds to curled fibrils of the GalNAc homopolymer. During excystation, host and Giardia proteases appear to degrade bound CWPs, exposing fibrils of the GalNAc homopolymer that are digested by a stage-specific glycohydrolase. Author SummaryWhile the walls of plants and fungi contain numerous sugar homopolymers (cellulose, chitin, and β-1,3-glucans) and dozens of proteins, the cyst wall of Giardia is relatively simple. The Giardia wall contains a unique homopolymer of β-1,3-linked N-acetylgalactosamine (GalNAc) and at least three cyst wall proteins (CWPs), each of which is composed of Leu-rich repeats and a C-terminal Cys-rich region. The three major discoveries here are: 1) Fibrils of the GalNAc homopolymer are curled and form a lattice that is compressed into a narrow plane by bound protein in intact cyst walls. 2) Leu-rich repeats of CWP1 form a novel lectin domain that is specific for fibrils of the GalNAc homopolymer, which can be isolated by methods used to deproteinate fungal walls. 3) A cyst-specific glycohydrolase is able to degrade deproteinated fibrils of the GalNAc homopolymer. We incorporate these findings into a new curled fiber and lectin model of the intact Giardia cyst wall and a protease and glycohydrolase model of excystation.National Institutes of Health (AI048082, AI44070, GM31318, RR1088

    CRISPR interference interrogation of COPD GWAS genes reveals the functional significance of desmoplakin in iPSC-derived alveolar epithelial cells

    Get PDF
    Genome-wide association studies (GWAS) have identified dozens of loci associated with chronic obstructive pulmonary disease (COPD) susceptibility; however, the function of associated genes in the cell type(s) affected in disease remains poorly understood, partly due to a lack of cell models that recapitulate human alveolar biology. Here, we apply CRISPR interference to interrogate the function of nine genes implicated in COPD by GWAS in induced pluripotent stem cell–derived type 2 alveolar epithelial cells (iAT2s). We find that multiple genes implicated by GWAS affect iAT2 function, including differentiation potential, maturation, and/or proliferation. Detailed characterization of the GWAS gene DSP demonstrates that it regulates iAT2 cell-cell junctions, proliferation, mitochondrial function, and response to cigarette smoke–induced injury. Our approach thus elucidates the biological function, as well as disease-relevant consequences of dysfunction, of genes implicated in COPD by GWAS in type 2 alveolar epithelial cells.This work was supported by a CJ Martin Early Career Fellowship from the Australian National Health and Medical Research Council awarded to R.B.W.; NIH grant F30HL147426 awarded to K.M.A.; NIH grants U01TR001810, R01DK101501, and R01DK117940 awarded to A.A.W.; NIH grants R01HL135142, R01HL137927, and R01HL147148 awarded to M.H.C.; and NIH grants R01HL127200 and R01HL148667 awarded to X.Z

    Human iPSC-hepatocyte modeling of alpha-1 antitrypsin heterozygosity reveals metabolic dysregulation and cellular heterogeneity

    Get PDF
    Individuals homozygous for the “Z” mutation in alpha-1 antitrypsin deficiency are known to be at increased risk for liver disease. It has also become clear that some degree of risk is similarly conferred by the heterozygous state. A lack of model systems that recapitulate heterozygosity in human hepatocytes has limited the ability to study the impact of a single Z alpha-1 antitrypsin (ZAAT) allele on hepatocyte biology. Here, we describe the derivation of syngeneic induced pluripotent stem cells (iPSCs) engineered to determine the effects of ZAAT heterozygosity in iPSC-hepatocytes (iHeps). We find that heterozygous MZ iHeps exhibit an intermediate disease phenotype and share with ZZ iHeps alterations in AAT protein processing and downstream perturbations including altered endoplasmic reticulum (ER) and mitochondrial morphology, reduced mitochondrial respiration, and branch-specific activation of the unfolded protein response in cell subpopulations. Our model of MZ heterozygosity thus provides evidence that a single Z allele is sufficient to disrupt hepatocyte homeostatic function.This work was supported by an Alpha-1 Foundation John W. Walsh Translational Research Award (to J.E.K.); a CJ Martin Early Career Fellowship from the Australian National Health and Medical Research Council (to R.B.W.); NIH grant R01HL095993 (to D.N.K.); and NIH grants R01DK101501 (to A.A.W.) and R01DK117940 (to A.N.H. and A.A.W.). iPSC distribution and disease modeling is supported by NIH grants U01TR001810 (to D.N.K. and A.A.W.) and N0175N92020C00005 (to D.N.K.); and by The Alpha-1 Project (TAP), a wholly owned subsidiary of the Alpha-1 Foundation (to D.N.K. and A.A.W.)

    Evidence for a “Wattle and Daub” Model of the Cyst Wall of Entamoeba

    Get PDF
    The cyst wall of Entamoeba invadens (Ei), a model for the human pathogen Entamoeba histolytica, is composed of fibrils of chitin and three chitin-binding lectins called Jacob, Jessie3, and chitinase. Here we show chitin, which was detected with wheat germ agglutinin, is made in secretory vesicles prior to its deposition on the surface of encysting Ei. Jacob lectins, which have tandemly arrayed chitin-binding domains (CBDs), and chitinase, which has an N-terminal CBD, were each made early during encystation. These results are consistent with their hypothesized roles in cross-linking chitin fibrils (Jacob lectins) and remodeling the cyst wall (chitinase). Jessie3 lectins likely form the mortar or daub of the cyst wall, because 1) Jessie lectins were made late during encystation; 2) the addition to Jessie lectins to the cyst wall correlated with a marked decrease in the permeability of cysts to nucleic acid stains (DAPI) and actin-binding heptapeptide (phalloidin); and 3) recombinant Jessie lectins, expressed as a maltose-binding proteins in the periplasm of Escherichia coli, caused transformed bacteria to agglutinate in suspension and form a hard pellet that did not dissociate after centrifugation. Jessie3 appeared as linear forms and rosettes by negative staining of secreted recombinant proteins. These findings provide evidence for a “wattle and daub” model of the Entamoeba cyst wall, where the wattle or sticks (chitin fibrils likely cross-linked by Jacob lectins) is constructed prior to the addition of the mortar or daub (Jessie3 lectins)

    Recombinant Lloviu virus as a tool to study viral replication and host responses

    Get PDF
    Next generation sequencing has revealed the presence of numerous RNA viruses in animal reservoir hosts, including many closely related to known human pathogens. Despite their zoonotic potential, most of these viruses remain understudied due to not yet being cultured. While reverse genetic systems can facilitate virus rescue, this is often hindered by missing viral genome ends. A prime example is Lloviu virus (LLOV), an uncultured filovirus that is closely related to the highly pathogenic Ebola virus. Using minigenome systems, we complemented the missing LLOV genomic ends and identified cis-acting elements required for LLOV replication that were lacking in the published sequence. We leveraged these data to generate recombinant full-length LLOV clones and rescue infectious virus. Similar to other filoviruses, recombinant LLOV (rLLOV) forms filamentous virions and induces the formation of characteristic inclusions in the cytoplasm of the infected cells, as shown by electron microscopy. Known target cells of Ebola virus, including macrophages and hepatocytes, are permissive to rLLOV infection, suggesting that humans could be potential hosts. However, inflammatory responses in human macrophages, a hallmark of Ebola virus disease, are not induced by rLLOV. Additional tropism testing identified pneumocytes as capable of robust rLLOV and Ebola virus infection. We also used rLLOV to test antivirals targeting multiple facets of the replication cycle. Rescue of uncultured viruses of pathogenic concern represents a valuable tool in our arsenal for pandemic preparedness
    corecore