41 research outputs found

    Haptoglobin-hemoglobin receptor independent killing of African trypanosomes by human serum and trypanosome lytic factors

    Get PDF
    The haptoglobin-hemoglobin receptor (HpHbR) of African trypanosomes plays a critical role in human innate immunity against these parasites. Localized to the flagellar pocket of the veterinary pathogen Trypanosoma brucei brucei this receptor binds Trypanosome Lytic Factor-1 (TLF-1), a subclass of human high-density lipoprotein (HDL) facilitating endocytosis, lysosomal trafficking and subsequent killing. Recently, we found that group 1 Trypanosoma brucei gambiense does not express a functional HpHbR. We now show that loss of the TbbHpHbR reduces the susceptibility of T. b. brucei to human serum and TLF-1 by 100- and 10,000-fold, respectively. The relatively high concentrations of human serum and TLF-1 needed to kill trypanosomes lacking the HpHbR indicates that high affinity TbbHpHbR binding enhances the cytotoxicity; however, in the absence of TbbHpHbR, other receptors or fluid phase endocytosis are sufficient to provide some level of susceptibility. Human serum contains a second innate immune factor, TLF-2, that has been suggested to kill trypanosomes independently of the TbbHpHbR. We found that T. b. brucei killing by TLF-2 was reduced in TbbHpHbR-deficient cells but to a lesser extent than TLF-1. This suggests that both TLF-1 and TLF-2 can be taken up via the TbbHpHbR but that alternative pathways exist for the uptake of these toxins. Together the findings reported here extend our previously published studies and suggest that group 1 T. b. gambiense has evolved multiple mechanisms to avoid killing by trypanolytic human serum factors

    A Gammaherpesvirus MicroRNA Targets EWSR1 (Ewing Sarcoma Breakpoint Region 1) In Vivo To Promote Latent Infection of Germinal Center B Cells

    No full text
    Gammaherpesviruses, including the human pathogens Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), directly contribute to the genesis of multiple types of malignancies. In vivo, these viruses infect B cells and manipulate B cell biology to establish lifelong infection. To accomplish this, gammaherpesviruses employ an array of gene products, including miRNAs, short noncoding RNAs that bind to and repress protein synthesis from specific target mRNAs. The in vivo relevance of repression of targets of gammaherpesvirus miRNAs remains highly elusive. Here, we identified a murine gammaherpesvirus miRNA as critical for in vivo infection and validated the host mRNA EWSR1 (Ewing sarcoma breakpoint region 1) as the predominant target for this miRNA. Using a novel technology, we demonstrated that repression of EWSR1 was essential for in vivo infection of the critical B cell reservoir. These findings provide the first in vivo demonstration of the significance of repression of a specific host mRNA by a gammaherpesvirus miRNA.Gammaherpesviruses, including the human pathogens Epstein-Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV), directly contribute to the genesis of multiple types of malignancies, including B cell lymphomas. In vivo, these viruses infect B cells and manipulate B cell biology to establish lifelong latent infection. To accomplish this, gammaherpesviruses employ an array of gene products, including microRNAs (miRNAs). Although numerous host mRNA targets of gammaherpesvirus miRNAs have been identified, the in vivo relevance of repression of these targets remains elusive due to species restriction. Murine gammaherpesvirus 68 (MHV68) provides a robust virus-host system to dissect the in vivo function of conserved gammaherpesvirus genetic elements. We identified here MHV68 mghv-miR-M1-7-5p as critical for in vivo infection and then validated host EWSR1 (Ewing sarcoma breakpoint region 1) as the predominant target for this miRNA. Using novel, target-specific shRNA-expressing viruses, we determined that EWSR1 repression in vivo was essential for germinal center B cell infection. These findings provide the first in vivo demonstration of the biological significance of repression of a specific host mRNA by a gammaherpesvirus miRNA

    EBV miRNAs are potent effectors of tumor cell transcriptome remodeling in promoting immune escape.

    No full text
    The Epstein Barr virus (EBV) contributes to the tumor phenotype through a limited set of primarily non-coding viral RNAs, including 31 mature miRNAs. Here we investigated the impact of EBV miRNAs on remodeling the tumor cell transcriptome. Strikingly, EBV miRNAs displayed exceptionally abundant expression in primary EBV-associated Burkitt's Lymphomas (BLs) and Gastric Carcinomas (GCs). To investigate viral miRNA targeting, we used the high-resolution approach, CLASH in GC and BL cell models. Affinity constant calculations of targeting efficacies for CLASH hits showed that viral miRNAs bind their targets more effectively than their host counterparts, as did Kaposi's sarcoma-associated herpesvirus (KSHV) and murine gammaherpesvirus 68 (MHV68) miRNAs. Using public BL and GC RNA-seq datasets, we found that high EBV miRNA targeting efficacies translates to enhanced reduction of target expression. Pathway analysis of high efficacy EBV miRNA targets showed enrichment for innate and adaptive immune responses. Inhibition of the immune response by EBV miRNAs was functionally validated in vivo through the finding of inverse correlations between EBV miRNAs and immune cell infiltration and T-cell diversity in BL and GC datasets. Together, this study demonstrates that EBV miRNAs are potent effectors of the tumor transcriptome that play a role in suppressing host immune response

    Mouse Gamma Herpesvirus MHV-68 Induces Severe Gastrointestinal (GI) Dilatation in Interferon Gamma Receptor-Deficient Mice (IFNγR−/−) That Is Blocked by Interleukin-10

    No full text
    Inflammatory bowel disease (IBD) and Clostridium difficile infection cause gastrointestinal (GI) distension and, in severe cases, toxic megacolon with risk of perforation and death. Herpesviruses have been linked to severe GI dilatation. MHV-68 is a model for human gamma herpesvirus infection inducing GI dilatation in interleukin-10 (IL-10)-deficient mice but is benign in wildtype mice. MHV-68 also causes lethal vasculitis and pulmonary hemorrhage in interferon gamma receptor-deficient (IFNγR−/−) mice, but GI dilatation has not been reported. In prior work the Myxomavirus-derived anti-inflammatory serpin, Serp-1, improved survival, reducing vasculitis and pulmonary hemorrhage in MHV-68-infected IFNγR−/− mice with significantly increased IL-10. IL-10 has been investigated as treatment for GI dilatation with variable efficacy. We report here that MHV-68 infection produces severe GI dilatation with inflammation and gut wall degradation in 28% of INFγR-/- mice. Macrophage invasion and smooth muscle degradation were accompanied by decreased concentrations of T helper (Th2), B, monocyte, and dendritic cells. Plasma and spleen IL-10 were significantly reduced in mice with GI dilatation, while interleukin-1 beta (IL-1β), IL-6, tumor necrosis factor alpha (TNFα) and INFγ increased. Treatment of gamma herpesvirus-infected mice with exogenous IL-10 prevents severe GI inflammation and dilatation, suggesting benefit for herpesvirus-induced dilatation

    Immune protection is dependent on the gut microbiome in a lethal mouse gammaherpesviral infection

    Get PDF
    Immunopathogenesis in systemic viral infections can induce a septic state with leaky capillary syndrome, disseminated coagulopathy, and high mortality with limited treatment options. Murine gammaherpesvirus-68 (MHV-68) intraperitoneal infection is a gammaherpesvirus model for producing severe vasculitis, colitis and lethal hemorrhagic pneumonia in interferon gamma receptor-deficient (IFNγR−/−) mice. In prior work, treatment with myxomavirus-derived Serp-1 or a derivative peptide S-7 (G305TTASSDTAITLIPR319) induced immune protection, reduced disease severity and improved survival after MHV-68 infection. Here, we investigate the gut bacterial microbiome in MHV-68 infection. Antibiotic suppression markedly accelerated MHV-68 pathology causing pulmonary consolidation and hemorrhage, increased mortality and specific modification of gut microbiota. Serp-1 and S-7 reduced pulmonary pathology and detectable MHV-68 with increased CD3 and CD8 cells. Treatment efficacy was lost after antibiotic treatments with associated specific changes in the gut bacterial microbiota. In summary, transkingdom host-virus-microbiome interactions in gammaherpesvirus infection influences gammaherpesviral infection severity and reduces immune modulating therapeutic efficacy.publishedVersio
    corecore