38 research outputs found

    First experience with single-source, dual-energy CCTA for monochromatic stent imaging

    Get PDF
    Aims Single-source, dual-energy coronary computed tomography angiography (CCTA) with monochromatic image reconstruction allows significant noise reduction. The aim of the study was to evaluate the impact of monochromatic CCTA image reconstruction on coronary stent imaging, as the latter is known to be affected by artefacts from highly attenuating strut material resulting in artificial luminal narrowing. Methods and results Twenty-one patients with 62 stents underwent invasive coronary angiography and single-source, dual-energy CCTA after stent implantation. Standard polychromatic images as well as eight monochromatic series (50, 60, 70, 80, 90, 100, 120, and 140 keV) were reconstructed for each CCTA. Signal and noise were measured within the stent lumen and in the aortic root. Mean in-stent luminal diameter was assessed in all CCTA reconstructions and compared with quantitative invasive coronary angiography (QCA). Luminal attenuation was higher in the stent than in the aortic root throughout all monochromatic reconstructions (P < 0.001). An increase in monochromatic energy was associated with a decrease in luminal attenuation values (P < 0.001). The mean in-stent luminal diameter underestimation by monochromatic CCTA compared with QCA was 90% at low monochromatic energy (50 keV) and improved to 37% at high monochromatic (140 keV) reconstruction while stent diameter was underestimated by 39% with standard CCTA. Conclusion Monochromatic CCTA can be used reliably in patients with coronary stents. However, reconstructions with energies below 80 keV are not recommended as the blooming artefacts are most pronounced at such low energies, resulting in up to 90% stent diameter underestimatio

    Coronary computed tomography angiography with model-based iterative reconstruction using a radiation exposure similar to chest X-ray examination

    Get PDF
    Aims To evaluate the feasibility and image quality of coronary computed tomography angiography (CCTA) acquisition with a submillisievert fraction of effective radiation dose using model-based iterative reconstruction (MBIR) for noise reduction. Methods and results In 42 patients undergoing standard low-dose (100-120 kV; 450-700 mA) and additional ultra-low-dose CCTA (80-100 kV; 150-210 mA) reconstructed with MBIR, segmental image quality was graded on a four-point scale [(i): non-evaluative, (ii): good, (iii): adequate, and (iv): excellent]. Signal-to-noise ratio (SNR) was calculated dividing left main artery (LMA) and right coronary artery (RCA) attenuation by the aortic root noise. Over a wide range of body mass index (18-40 kg/m2), the estimated median radiation dose exposure was 1.19 mSv [interquartile range (IQR): 1.07-1.30 mSv] for standard and 0.21 mSv (IQR: 0.18-0.23 mSv) for ultra-low-dose CCTA (P < 0.001). The median image quality score per segment was 3.5 (IQR: 3.0-4.0) in standard CCTA vs. 3.5 (IQR: 2.5-4.0) in ultra-low dose with MBIR (P = 0.29). Diagnostic image quality (scores 2-4) was found in 98.7 vs. 97.8% coronary segments (P = 0.36). Introduction of MBIR for ultra-low-dose CCTA resulted in a significant increase in SNR (P < 0.001) for LMA (from 15 ± 5 to 29 ± 7) and RCA (from 14 ± 4 to 27 ± 6) despite 82% dose reduction. Conclusion Coronary computed tomography angiography acquisition with diagnostic image quality is feasible at an ultra-lowradiation dose of 0.21 mSv, e.g. in the range reported for a postero-anterior and lateral chest X-ra

    First in vivo head-to-head comparison of high-definition versus standard-definition stent imaging with 64-slice computed tomography

    Get PDF
    The aim of this study was to compare image quality characteristics from 64-slice high definition (HDCT) versus 64-slice standard definition CT (SDCT) for coronary stent imaging. In twenty-five stents of 14 patients, undergoing contrast-enhanced CCTA both on 64-slice SDCT (LightSpeedVCT, GE Healthcare) and HDCT (Discovery HD750, GE Healthcare), radiation dose, contrast, noise and stent characteristics were assessed. Two blinded observers graded stent image quality (score 1=no, 2=mild, 3=moderate, and 4=severe artefacts). All scans were reconstructed with increasing contributions of adaptive statistical iterative reconstruction (ASIR) blending (0, 20, 40, 60, 80 and 100%). Image quality was significantly superior in HDCT versus SDCT (score 1.7±0.5 vs. 2.7±0.7; p<0.05). Image noise was significantly higher in HDCT compared to SDCT irrespective of ASIR contributions (p<0.05). Addition of 40% ASIR or more reduced image noise significantly in both HDCT and SDCT. In HDCT in-stent luminal attenuation was significantly lower and mean measured in-stent luminal diameter was significantly larger (1.2±0.4mm vs. 0.8±0.4mm; p<0.05) compared to SDCT. Radiation dose from HDCT was comparable to SDCT (1.8±0.7mSv vs. 1.7±0.7mSv; p=ns). Use of HDCT for coronary stent imaging reduces partial volume artefacts from stents yielding improved image quality versus SDCT at a comparable radiation dos

    Cardiac abnormalities in Long COVID 1-year post-SARS-CoV-2 infection

    Get PDF
    BACKGROUND: Long COVID is associated with multiple symptoms and impairment in multiple organs. Cross-sectional studies have reported cardiac impairment to varying degrees by varying methodologies. Using cardiac MR (CMR), we investigated a 12-month trajectory of abnormalities in Long COVID. OBJECTIVES: To investigate cardiac abnormalities 1-year post-SARS-CoV-2 infection. METHODS: 534 individuals with Long COVID underwent CMR (T1/T2 mapping, cardiac mass, volumes, function and strain) and multiorgan MRI at 6 months (IQR 4.3-7.3) since first post-COVID-19 symptoms. 330 were rescanned at 12.6 (IQR 11.4-14.2) months if abnormal baseline findings were reported. Symptoms, questionnaires and blood samples were collected at both time points. CMR abnormalities were defined as ≥1 of low left or right ventricular ejection fraction (LVEF), high left or right ventricular end diastolic volume, low 3D left ventricular global longitudinal strain (GLS), or elevated native T1 in ≥3 cardiac segments. Significant change over time was reported by comparison with 92 healthy controls. RESULTS: Technical success of multiorgan and CMR assessment in non-acute settings was 99.1% and 99.6% at baseline, and 98.3% and 98.8% at follow-up. Of individuals with Long COVID, 102/534 (19%) had CMR abnormalities at baseline; 71/102 had complete paired data at 12 months. Of those, 58% presented with ongoing CMR abnormalities at 12 months. High sensitivity cardiac troponin I and B-type natriuretic peptide were not predictive of CMR findings, symptoms or clinical outcomes. At baseline, low LVEF was associated with persistent CMR abnormality, abnormal GLS associated with low quality of life and abnormal T1 in at least three segments was associated with better clinical outcomes at 12 months. CONCLUSION: CMR abnormalities (left entricular or right ventricular dysfunction/dilatation and/or abnormal T1mapping), occurred in one in five individuals with Long COVID at 6 months, persisting in over half of those at 12 months. Cardiac-related blood biomarkers could not identify CMR abnormalities in Long COVID. TRIAL REGISTRATION NUMBER: NCT04369807

    Coronary artery calcium quantification from contrast enhanced CT using gemstone spectral imaging and material decomposition

    Get PDF
    To explore the feasibility of coronary artery calcium (CAC) measurement from low-dose contrast enhanced coronary CT angiography (CCTA) as this may obviate the need for an unenhanced CT scan. 52 patients underwent unenhanced cardiac CT and prospectively ECG triggered contrast enhanced CCTA (Discovery HD 750, GE Healthcare, Milwaukee, WI, USA). The latter was acquired in single-source dual-energy mode [gemstone spectral imaging (GSI)]. Virtual unenhanced images were generated from GSI CCTA by monochromatic image reconstruction of 70keV allowing selective iodine material suppression. CAC scores from virtual unenhanced CT were compared to standard unenhanced CT including a linear regression model. After iodine subtraction from the contrast enhanced CCTA the attenuation in the ascending aorta decreased significantly from 359±61 to 54±8HU (P<0.001), the latter comparing well to the value of 64±55HU found in the standard unenhanced CT (P=ns) confirming successful iodine subtraction. After introducing linear regression formula the mean values for Agatston, Volume and Mass scores of virtual unenhanced CT were 187±321, 72±114mm3, and 27±46mg/cm3, comparing well to the values from standard unenhanced CT (187±309, 72±110mm3, and 27±45mg/cm3) yielding an excellent correlation (r=0.96, r=0.96, r=0.92; P<0.001). Mean estimated radiation dose revealed 0.83±0.02mSv from the unenhanced CT and 1.70±0.53mSv from the contrast enhanced CCTA. Single-source dual-energy scanning with GSI allows CAC quantification from low dose contrast enhanced CCTA by virtual iodine contrast subtraction

    Coronary artery calcium quantification from contrast enhanced CT using gemstone spectral imaging and material decomposition

    Full text link
    To explore the feasibility of coronary artery calcium (CAC) measurement from low-dose contrast enhanced coronary CT angiography (CCTA) as this may obviate the need for an unenhanced CT scan. 52 patients underwent unenhanced cardiac CT and prospectively ECG triggered contrast enhanced CCTA (Discovery HD 750, GE Healthcare, Milwaukee, WI, USA). The latter was acquired in single-source dual-energy mode [gemstone spectral imaging (GSI)]. Virtual unenhanced images were generated from GSI CCTA by monochromatic image reconstruction of 70 keV allowing selective iodine material suppression. CAC scores from virtual unenhanced CT were compared to standard unenhanced CT including a linear regression model. After iodine subtraction from the contrast enhanced CCTA the attenuation in the ascending aorta decreased significantly from 359 ± 61 to 54 ± 8 HU (P < 0.001), the latter comparing well to the value of 64 ± 55 HU found in the standard unenhanced CT (P = ns) confirming successful iodine subtraction. After introducing linear regression formula the mean values for Agatston, Volume and Mass scores of virtual unenhanced CT were 187 ± 321, 72 ± 114 mm(3), and 27 ± 46 mg/cm(3), comparing well to the values from standard unenhanced CT (187 ± 309, 72 ± 110 mm(3), and 27 ± 45 mg/cm(3)) yielding an excellent correlation (r = 0.96, r = 0.96, r = 0.92; P < 0.001). Mean estimated radiation dose revealed 0.83 ± 0.02 mSv from the unenhanced CT and 1.70 ± 0.53 mSv from the contrast enhanced CCTA. Single-source dual-energy scanning with GSI allows CAC quantification from low dose contrast enhanced CCTA by virtual iodine contrast subtraction

    SARS Coronavirus-2 microneutralisation and commercial serological assays correlated closely for some but not all enzyme immunoassays

    Get PDF
    Serological testing for SARS-CoV-2-specific antibodies provides important research and diagnostic information relating to COVID-19 prevalence, incidence and host immune response. A greater understanding of the relationship between functionally neutralising antibodies detected using microneutralisation assays and binding antibodies detected using scalable enzyme immunoassays (EIA) is needed in order to address protective immunity post-infection or vaccination, and assess EIA suitability as a surrogate test for screening of convalescent plasma donors. We assessed whether neutralising antibody titres correlated with signal cut-off ratios in five commercially available EIAs, and one in-house assay based on expressed spike protein targets. Sera from recovered patients or convalescent plasma donors who reported laboratory-confirmed SARS-CoV-2 infection (n = 200), and negative control sera collected prior to the COVID-19 pandemic (n = 100), were assessed in parallel. Performance was assessed by calculating EIA sensitivity and specificity with reference to microneutralisation. Neutralising antibodies were detected in 166 (83%) samples. Compared with this, the most sensitive EIAs were the Cobas Elecsys Anti-SARS-CoV-2 (98%) and Vitros Immunodiagnostic Anti-SARS-CoV-2 (100%), which detect total antibody targeting the N and S1 antigens, respectively. The assay with the best quantitative relationship with microneutralisation was the Euroimmun IgG. These results suggest the marker used (total Ab vs. IgG vs. IgA) and the target antigen are important determinants of assay performance. The strong correlation between microneutralisation and some commercially available assays demonstrates their potential for clinical and research use in assessing protection following infection or vaccination, and use as a surrogate test to assess donor suitability for convalescent plasma donation
    corecore