64 research outputs found

    In situ conditions affecting the ductility capacity of lightly reinforced concrete wall structures in the Canterbury earthquake sequence

    Get PDF
    Following the 2010-2011 Canterbury (New Zealand) earthquake sequence, lightly reinforced wall structures in the Christchurch central business district were observed to form undesirable crack patterns in the plastic hinge region, while yield penetration either side of cracks and into development zones was less than predicted using empirical expressions. To some extent this structural behaviour was unexpected and has therefore demonstrated that there may be less confidence in the seismic performance of conventionally designed reinforced concrete (RC) structures than previously anticipated. This paper provides an observation-based comparison between the behaviour of RC structural components in laboratory testing and the unexpected structural behaviour of some case study buildings in Christchurch that formed concentrated inelastic deformations. The unexpected behaviour and poor overall seismic performance of ‘real’ buildings (compared to the behaviour of laboratory test specimens) was due to the localization of peak inelastic strains, which in some cases has arguably led to: (i) significantly less ductility capacity; (ii) less hysteretic energy dissipation; and (iii) the fracture of the longitudinal reinforcement. These observations have raised concerns about whether lightly reinforced wall structures can satisfy the performance objective of “Life Safety” at the Ultimate Limit State. The significance of these issues and potential consequences has prompted a review of potential problems with the testing conditions and procedures that are commonly used in seismic experimentations on RC structures. This paper attempts to revisit the principles of RC mechanics, in particular, the influence of loading history, concrete tensile strength, and the quantity of longitudinal reinforcement on the performance of real RC structures. Consideration of these issues in future research on the seismic performance of RC might improve the current confidence levels in newly designed conventional RC structures

    Pseudomonas cannabina pv. cannabina pv. nov., and Pseudomonas cannabina pv. alisalensis (Cintas Koike and Bull, 2000) comb. nov., are members of the emended species Pseudomonas cannabina (ex Ơutič & Dowson 1959) Gardan, Shafik, Belouin, Brosch, Grimont

    Get PDF
    Sequence similarity in the 16S rDNA gene confirmed that crucifer pathogen Pseudomonas syringae pv. alisalensis belongs to P. syringae sensu lato. In reciprocal DNA/DNA hybridization experiments, DNA relatedness was high (69–100%) between P. syringae pv. alisalensis strains and the type strain of P. cannabina (genomospecies 9). In contrast, DNA relatedness was low (below 48%) between P. syringae pv. alisalensis and reference strains from the remaining genomospecies of P. syringae including the type strain of P. syringae and reference strain of genomospecies 3 (P. syringae pv. tomato) although the well-known crucifer pathogen, P. syringae pv. maculicola, also belongs to genomospecies 3. Additional evidence that P. syringae pv. alisalensis belongs to P. cannabina was sequence similarity in five gene fragments used in multilocus sequence typing, as well as similar rep-PCR patterns when using the BOX-A1R primers. The description of P. cannabina has been emended to include P. syringae pv. alisalensis. Host range testing demonstrated that P. syringae pv. alisalensis strains, originally isolated from broccoli, broccoli raab or arugula, were not pathogenic on Cannabis sativa (family Cannabinaceae). Additionally, P. cannabina strains, originally isolated from the C. sativa were not pathogenic on broccoli raab or oat while P. syringae pv. alisalensis strains were pathogenic on these hosts. Distinct host ranges for these two groups indicate that P. cannabina emend. consists of at least two distinct pathovars, P. cannabina pv. cannabina pv. nov., and P. cannabina pv. alisalensis comb. nov. Pseudomonas syringae pv. maculicola strain CFBP 1637 is a member of P. cannabina

    Microbial engineering of new streptomyces sp. from extreme environments for novel antibiotics and anticancer drugs

    Get PDF
    Today there is a tremendous need for new antibiotics and novel cytotoxic compounds against cancer cells to develop efficient alternative treatment to chemotherapy. We have searched for highly active Streptomyces strains in the driest desert in the world, the Atacama desert in northern Chile. We have identified several new strains and found many novel antibiotics and anticancer agents (“Chaxamycins”, “Chaxalactins” and “Atacamycins”) from Streptomyces C34 and C38. A genome scale model of the metabolism of Streptomyces leeuwenhoekii C34 has been developed from its genome sequence. The model, iVR1007, has 1726 reactions including 239 for transport, reactions for secondary metabolite biosynthesis, 1463 metabolites and 1007 genes. The model was validated with experimental data of growth in 89, 54 and 23 sole carbon, nitrogen and phosphorous sources, respectively, and showed a high level of accuracy (82.5 %). We have included reactions for desferrioxamines, ectoine, Chaxamycins, Chaxalactins and for the hybrid polyketides/non-ribosomal peptide synthesized by the halogenase cluster. A detailed Metabolic Flux Balance Analysis was carried out in order to study the metabolic pathways of Chaxalactins, Chaxamycins and the product of the halogenase cluster, by recognizing overexpression targets and useful knock-out sites to increase production of these secondary metabolites. Alternatively we have identified the gene cluster in S. leeuwenhoekii C34 responsible for the biosynthesis of the Chaxamycins and Chaxalactins and have cloned the whole gene cluster in a much more efficient strain of Streptomyces, namely S. coelicolor A3 whose heterologous expression of gene clusters from other Streptomyces strains has been successfully tested. Our recent results concerning these two alternative strategies for identification and overproduction of these important secondary metabolites will be presented and discussed in this presentation

    The Behavioral Roots of Information Systems Security:Exploring Key Factors Related to Unethical IT Use

    Get PDF
    Unethical information technology (IT) use, related to activities such as hacking, software piracy, phishing, and spoofing, has become a major security concern for individuals, organizations, and society in terms of the threat to information systems (IS) security. While there is a growing body of work on this phenomenon, we notice several gaps, limitations, and inconsistencies in the literature. In order to further understand this complex phenomenon and reconcile past findings, we conduct an exploratory study to uncover the nomological network of key constructs salient to this phenomenon, and the nature of their interrelationships. Using a scenario-based study of young adult participants, and both linear and nonlinear analyses, we uncover key nuances of this phenomenon of unethical IT use. We find that unethical IT use is a complex phenomenon, often characterized by nonlinear and idiosyncratic relationships between the constructs that capture it. Overall, ethical beliefs held by the individuals, along with economic, social, and technological considerations are found to be relevant to this phenomenon. In terms of practical implications, these results suggest that multiple interventions at various levels may be required to combat this growing threat to IS security

    Reviewing the uncertainties in seismic experimentation following the unexpected performance of RC structures in the 2010-2011 Canterbury earthquakes

    Get PDF
    The performance of conventionally designed reinforced concrete (RC) structures during the 2011 Christchurch earthquake has demonstrated that there is greater uncertainty in the seismic performance of RC components than previously understood. RC frame and wall structures in the Christchurch central business district were observed to form undesirable cracks patterns in the plastic hinge region while yield penetration either side of cracks, and into development zones, were less than theoretical predictions. The implications of this unexpected behaviour: (i) significantly less available ductility; (ii) less hysteretic energy dissipation; and (iii) the localization of peak reinforcement strains, results in considerable doubt for the residual capacity of RC structures. The significance of these consequences has prompted a review of potential sources of uncertainty in seismic experimentation with the intention to improve the current confidence level for newly designed conventional RC structures. This paper attempts to revisit the principles of RC mechanics, in particular, to consider the influence of loading history, concrete tensile strength, and reinforcement ratio on the performance of ‘real’ RC structures compared to experimental test specimens

    Monotonic and cyclic bond behaviour of deformed bars in reinforced concrete structures

    Get PDF
    A major lesson from the 2011 Christchurch earthquake was the apparent lack of ductility of some lightly reinforced concrete (RC) wall structures. In particular, the structural behaviour of the critical wall in the Gallery Apartments building demonstrated that the inelastic deformation capacity of a structure, as well as potentially brittle failure of the reinforcement, is dependent on the level of bond deterioration between reinforcement and surrounding concrete that occurs under seismic loading. This paper presents the findings of an experimental study on bond behaviour between deformed reinforcing bars and the surrounding concrete. Bond strength and relative bond slip was evaluated using 75 pull-out tests under monotonic and cyclic loading. Variations of the experiments include the loading rate, loading history, concrete strength (25 to 70 MPa), concrete age, cover thickness, bar diameter (16 and 20 mm), embedded length, and the position of the embedded bond region within the specimen (deep within or close to free surface). Select test results are presented with inferred implications for RC structures
    • 

    corecore