31 research outputs found

    Lenalidomide interferes with tumor-promoting properties of nurse-like cells in chronic lymphocytic leukemia

    Get PDF
    Lenalidomide is an immunomodulatory agent clinically active in chronic lymphocytic leukemia patients. The specific mechanism of action is still undefined, but includes modulation of the microenvironment. In chronic lymphocytic leukemia patients, nurse-like cells differentiate from CD14(+) mononuclear cells and protect chronic lymphocytic leukemia cells from apoptosis. Nurse-like cells resemble M2 macrophages with potent immunosuppressive functions. Here, we examined the effect of lenalidomide on the monocyte/macrophage population in chronic lymphocytic leukemia patients. We found that lenalidomide induces high actin polymerization on CD14(+) monocytes through activation of small GTPases, RhoA, Rac1 and Rap1 that correlated with increased adhesion and impaired monocyte migration in response to CCL2, CCL3 and CXCL12. We observed that lenalidomide increases the number of nurse-like cells that lost the ability to nurture chronic lymphocytic leukemia cells, acquired properties of phagocytosis and promoted T-cell proliferation. Gene expression signature, induced by lenalidomide in nurse-like cells, indicated a reduction of pivotal pro-survival signals for chronic lymphocytic leukemia, such as CCL2, IGF1, CXCL12, HGF1, and supported a modulation towards M1 phenotype with high IL2 and low IL10, IL8 and CD163. Our data provide new insights into the mechanism of action of lenalidomide that mediates a pro-inflammatory switch of nurse-like cells affecting the protective microenvironment generated by chronic lymphocytic leukemia into tissues

    Skewing effect of sulprostone on dendritic cell maturation compared with dinoprostone.

    Get PDF
    Abstract Background Dendritic cells (DCs) are the most efficient antigen-presenting cells and act at the center of the immune system owing to their ability to control both immune tolerance and immunity. In cancer immunotherapy, DCs play a key role in the regulation of the immune response against tumors and can be generated ex vivo with different cytokine cocktails. Methods . We evaluated the feasibility of dinoprostone (PGE 2 ) replacement with the molecular analog sulprostone, in our good manufacturing practice (GMP) protocol for the generation of DC-based cancer vaccine. We characterized the phenotype and the function of DCs matured in the presence of sulprostone as a potential substitute of dinoprostone in the pro-inflammatory maturation cocktail consisting of tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β) and IL-6. Results . We found that sulprostone invariably reduces the recovery, but does not significantly modify the viability and the purity of DCs. The presence of sulprostone in the maturation cocktail increases the adhesion of single cells and of clusters of DCs to the flask, making them more similar to their immature counterpart in terms of adhesion and spreading proprieties. Moreover, we observed that sulprostone impairs the expression of co-stimulatory molecules and the spontaneous as well as the directed migration capacity of DCs. Discussion These findings underscore that the synthetic analog sulprostone strongly reduces the functional quality of DCs, thus cannot replace dinoprostone in the maturation cocktail of monocyte-derived DCs

    832 Unravelling human melanoma heterogeneity by 6-color multiplex immunofluorescence to overcome recurrence and resistance to therapy

    Get PDF
    Background Inter- and intralesional tumor heterogeneity is commonly seen in metastatic melanoma, likely playing a major role in resistance to therapy, immunotherapy included. This research project aims to identify by 6-color multiplex immunofluorescence melanoma cell subpopulations, to reveal those that are insufficiently targeted by current immunotherapies. Methods In silico analysis of single cell RNAseq data available from the literature for melanoma were performed and matched with a list of known cancer antigens. Genes discriminating between different subpopulations of melanoma cells were selected and included for multiplex immunofluorescence experiments. FFPE sections from pre- and post-immunotherapy (DC vaccination or ipilimumab) treated melanoma patients were stained by multiplex immunofluorescence for AXL, MITF, PRAME, melanoma lineage (comprising Melan-A, gp100 and tyrosinase), CD45 and CD8 expression. Results Single cell-based analysis of RNAseq data revealed two sets of genes discriminating between different subpopulations of melanoma cells and covering most melanoma cells. Set 1 was shown to be AXL high/MITF low and expressed PRAME, whereas set 2 was shown to be AXL low/MITF high and expressed melanoma lineage markers. The 6-color multiplex immunofluorescence panel could discriminate different melanoma subpopulations, thereby giving information on melanoma heterogeneity. Image analyses of melanoma phenotypes and immune infiltrates is still ongoing. These analyses also include the topographical location of different melanoma cell subpopulations with respect to immune cells, and their changes after immunotherapy. Conclusions Melanoma heterogeneity pre- and post-immunotherapy can be analyzed by 6-color multiplex immunofluorescence

    Monocytic population in chronic lymphocytic leukemia shows altered composition and deregulation of genes involved in phagocytosis and inflammation

    Get PDF
    Macrophages reside in tissues infiltrated by chronic lymphocytic leukemia B-cells and the extent of infiltration is associated with adverse prognostic factors. Blood monocyte population was studied by flow cytometry and whole-genome microarrays. A mixed lymphocyte reaction was performed to evaluate T cell proliferation in contact with monocytes from patients and normal donors. Migration and gene modulation in normal monocytes treated with leukemia were also evaluated. Chronic lymphocytic leukemia patients showed an increase in the absolute number of monocytes compared to normal controls (792+/-86 cells/mL vs. 485+/-46 cells/mL, p=0.003). Higher number of nonclassical CD14+CD16++ and Tie-2 expressing monocytes (TEMs) was also detected in patients. Furthermore, we performed a gene expression analysis of monocytes in chronic lymphocytic leukemia patients, showing up-regulation of RAP1GAP and down-regulation of tubulins and CDC42EP3, which would be expected to result in impairment in phagocytosis. We also detected gene alterations such as the down-regulation of PTGR2, a reductase able to inactivate the prostaglandin E2, indicating an immunosuppressive activity. Accordingly, T cell proliferation was inhibited in contact with monocytes from patients compared to normal controls. Finally, normal monocytes in vitro increased migration and up-regulated CD16, RAP1GAP, IL-10, IL-8, MMP9 and down-regulated PTGR2 in response to leukemic cells or conditioned media. In conclusion, altered composition and deregulation of genes involved in phagocytosis and inflammation were found in blood monocytes obtained from chronic lymphocytic leukemia patients, suggesting that leukemia-mediated 'education' of immune elements may also include the establishment of a skewed phenotype in monocyte/macrophage population

    Defining composition and function of the rhizosphere microbiota of barley genotypes exposed to growth-limiting nitrogen supplies

    Get PDF
    The microbiota populating the rhizosphere, the interface between roots and soil, can modulate plant growth, development, and health. These microbial communities are not stochastically assembled from the surrounding soil, but their composition and putative function are controlled, at least partially, by the host plant. Here, we use the staple cereal barley as a model to gain novel insights into the impact of differential applications of nitrogen, a rate-limiting step for global crop production, on the host genetic control of the rhizosphere microbiota. Using a high-throughput amplicon sequencing survey, we determined that nitrogen availability for plant uptake is a factor promoting the selective enrichment of individual taxa in the rhizosphere of wild and domesticated barley genotypes. Shotgun sequencing and metagenome-assembled genomes revealed that this taxonomic diversification is mirrored by a functional specialization, manifested by the differential enrichment of multiple Gene Ontology terms, of the microbiota of plants exposed to nitrogen conditions limiting barley growth. Finally, a plant soil feedback experiment revealed that host control of the barley microbiota underpins the assembly of a phylogenetically diverse group of bacteria putatively required to sustain plant performance under nitrogen-limiting supplies. Taken together, our observations indicate that under nitrogen conditions limiting plant growth, host-microbe and microbe-microbe interactions fine-tune the host genetic selection of the barley microbiota at both taxonomic and functional levels. The disruption of these recruitment cues negatively impacts plant growth

    Stability Program in Dendritic Cell Vaccines: A “Real-World” Experience in the Immuno-Gene Therapy Factory of Romagna Cancer Center

    Get PDF
    Advanced therapy medical products (ATMPs) are rapidly growing as innovative medicines for the treatment of several diseases. Hence, the role of quality analytical tests to ensure consistent product safety and quality has become highly relevant. Several clinical trials involving dendritic cell (DC)-based vaccines for cancer treatment are ongoing at our institute. The DC-based vaccine is prepared via CD14+ monocyte differentiation. A fresh dose of 10 million DCs is administered to the patient, while the remaining DCs are aliquoted, frozen, and stored in nitrogen vapor for subsequent treatment doses. To evaluate the maintenance of quality parameters and to establish a shelf life of frozen vaccine aliquots, a stability program was developed. Several parameters of the DC final product at 0, 6, 12, 18, and 24 months were evaluated. Our results reveal that after 24 months of storage in nitrogen vapor, the cell viability is in a range between 82% and 99%, the expression of maturation markers remains inside the criteria for batch release, the sterility tests are compliant, and the cell costimulatory capacity unchanged. Thus, the data collected demonstrate that freezing and thawing do not perturb the DC vaccine product maintaining over time its functional and quality characteristics

    Dendritic cell vaccination in metastatic melanoma turns \u201cnon-T cell inflamed\u201d into \u201cT-cell inflamed\u201d tumors

    Get PDF
    Dendritic cell (DC)-based vaccination effectively induces anti-tumor immunity, although in the majority of cases this does not translate into a durable clinical response. However, DC vaccination is characterized by a robust safety profile, making this treatment a potential candidate for effective combination cancer immunotherapy. To explore this possibility, understanding changes occurring in the tumor microenvironment (TME) upon DC vaccination is required. In this line, quantitative and qualitative changes in tumor-infiltrating T lymphocytes (TILs) induced by vaccination with autologous tumor lysate/homogenate loaded DCs were investigated in a series of 16 patients with metastatic melanoma. Immunohistochemistry for CD4, CD8, Foxp3, Granzyme B (GZMB), PDL1, and HLA class I was performed in tumor biopsies collected before and after DC vaccination. The density of each marker was quantified by automated digital pathology analysis on whole slide images. Co-expression of markers defining functional phenotypes, i.e., Foxp3+ regulatory CD4+ T cells (Treg) and GZMB+ cytotoxic CD8+ T cells, was assessed with sequential immunohistochemistry. A significant increase of CD8+ TILs was found in post-vaccine biopsies of patients who were not previously treated with immune-modulating cytokines or Ipilimumab. Interestingly, along with a maintained tumoral HLA class I expression, after DC vaccination we observed a significant increase of PDL1+ tumor cells, which significantly correlated with intratumoral CD8+ T cell density. This observation might explain the lack of a significant concurrent cytotoxic reactivation of CD8+ T cell, as measured by the numbers of GZMB+ T cells. Altogether these findings indicate that DC vaccination exerts an important role in sustaining or de novo inducing a T cell inflamed TME. However, the strength of the intratumoral T cell activation detected in post-DC therapy lesions is lessened by an occurring phenomenon of adaptive immune resistance, yet the concomitant PDL1 up-regulation. Overall, this study sheds light on DC immunotherapy-induced TME changes, lending the rationale for the design of smarter immune-combination therapies

    Sequential immunotherapy and targeted therapy for metastatic BRAF V600 mutated melanoma: 4-year survival and biomarkers evaluation from the phase II SECOMBIT trial

    Get PDF
    No prospective data were available prior to 2021 to inform selection between combination BRAF and MEK inhibition versus dual blockade of programmed cell death protein-1 (PD-1) and cytotoxic T lymphocyte antigen-4 (CTLA-4) as first-line treatment options for BRAFV600-mutant melanoma. SECOMBIT (NCT02631447) was a randomized, three-arm, noncomparative phase II trial in which patients were randomized to one of two sequences with immunotherapy or targeted therapy first, with a third arm in which an 8-week induction course of targeted therapy followed by a planned switch to immunotherapy was the first treatment. BRAF/MEK inhibitors were encorafenib plus binimetinib and checkpoint inhibitors ipilimumab plus nivolumab. Primary outcome of overall survival was previously reported, demonstrating improved survival with immunotherapy administered until progression and followed by BRAF/MEK inhibition. Here we report 4-year survival outcomes, confirming long-term benefit with first-line immunotherapy. We also describe preliminary results of predefined biomarkers analyses that identify a trend toward improved 4-year overall survival and total progression-free survival in patients with loss-of-function mutations affecting JAK or low baseline levels of serum interferon gamma (IFNy). These long-term survival outcomes confirm immunotherapy as the preferred first-line treatment approach for most patients with BRAFV600-mutant metastatic melanoma, and the biomarker analyses are hypothesis-generating for future investigations of predictors of durable benefit with dual checkpoint blockade and targeted therapy
    corecore