257 research outputs found

    Electric circuit networks equivalent to chaotic quantum billiards

    Full text link
    We formulate two types of electric RLC resonance network equivalent to quantum billiards. In the network of inductors grounded by capacitors squared resonant frequencies are eigenvalues of the quantum billiard. In the network of capacitors grounded by inductors squared resonant frequencies are given by inverse eigen values of the billiard. In both cases local voltages play role of the wave function of the quantum billiard. However as different from quantum billiards there is a heat power because of resistance of the inductors. In the equivalent chaotic billiards we derive the distribution of the heat power which well describes numerical statistics.Comment: 9 pages, 7 figure

    Statistical study of the conductance and shot noise in open quantum-chaotic cavities: Contribution from whispering gallery modes

    Full text link
    In the past, a maximum-entropy model was introduced and applied to the study of statistical scattering by chaotic cavities, when short paths may play an important role in the scattering process. In particular, the validity of the model was investigated in relation with the statistical properties of the conductance in open chaotic cavities. In this article we investigate further the validity of the maximum-entropy model, by comparing the theoretical predictions with the results of computer simulations, in which the Schroedinger equation is solved numerically inside the cavity for one and two open channels in the leads; we analyze, in addition to the conductance, the zero-frequency limit of the shot-noise power spectrum. We also obtain theoretical results for the ensemble average of this last quantity, for the orthogonal and unitary cases of the circular ensemble and an arbitrary number of channels. Generally speaking, the agreement between theory and numerics is good. In some of the cavities that we study, short paths consist of whispering gallery modes, which were excluded in previous studies. These cavities turn out to be all the more interesting, as it is in relation with them that we found certain systematic discrepancies in the comparison with theory. We give evidence that it is the lack of stationarity inside the energy interval that is analyzed, and hence the lack of ergodicity that gives rise to the discrepancies. Indeed, the agreement between theory and numerical simulations is improved when the energy interval is reduced to a point and the statistics is then collected over an ensemble. It thus appears that the maximum-entropy model is valid beyond the domain where it was originally derived. An understanding of this situation is still lacking at the present moment.Comment: Revised version, minor modifications, 28 pages, 7 figure

    Hall-like effect induced by spin-orbit interaction

    Full text link
    The effect of spin-orbit interaction on electron transport properties of a cross-junction structure is studied. It is shown that it results in spin polarization of left and right outgoing electron waves. Consequently, incoming electron wave of a proper polarization induces voltage drop perpendicularly to the direct current flow between source and drain of the considered four-terminal cross-structure. The resulting Hall-like resistance is estimated to be of the order of 10^-3 - 10^-2 h/e^2 for technologically available structures. The effect becomes more pronounced in the vicinity of resonances where Hall-like resistance changes its sign as function of the Fermi energy.Comment: 4 pages (RevTeX), 4 figures, will appear in Phys. Rev. Let

    Two-component model of a spin-polarized transport

    Full text link
    Effect of the spin-involved interaction of electrons with impurity atoms or defects to the transport properties of a two-dimensional electron gas is described by using a simplifying two-component model. Components representing spin-up and spin-down states are supposed to be coupled at a discrete set of points within a conduction channel. The used limit of the short-range interaction allows to solve the relevant scattering problem exactly. By varying the model parameters different transport regimes of two-terminal devices with ferromagnetic contacts can be described. In a quasi-ballistic regime the resulting difference between conductances for the parallel and antiparallel orientation of the contact magnetization changes its sign as a function of the length of the conduction channel if appropriate model parameters are chosen. The effect is in agreement with recent experimental observations.Comment: 4 RevTeX pages with 4 figure

    Effect of Quadratic Zeeman Energy on the Vortex of Spinor Bose-Einstein Condensates

    Full text link
    The spinor Bose-Einstein condensate of atomic gases has been experimentally realized by a number of groups. Further, theoretical proposals of the possible vortex states have been sugessted. This paper studies the effects of the quadratic Zeeman energy on the vortex states. This energy was ignored in previous theoretical studies, although it exists in experimental systems. We present phase diagrams of various vortex states taking into account the quadratic Zeeman energy. The vortex states are calculated by the Gross-Pitaevskii equations. Several new kinds of vortex states are found. It is also found that the quadratic Zeeman energy affects the direction of total magnetization and causes a significant change in the phase diagrams.Comment: 6 pages, 5 figures. Published in J. Phys. Soc. Jp
    • …
    corecore