26 research outputs found
Natural cases of polyarthritis associated with feline calicivirus infection in cats
The limping syndrome is occasionally reported during acute feline calicivirus (FCV) infections or as consequence of vaccination. In this retrospective study, three clinical cases of lameness in household cats naturally infected by FCV were described and phylogeny of the virus were investigated by analysing the hypervariable E region of the ORF2 viral gene. Cats were diagnosed with polyarthritis and FCV RNA or antigens were detected in symptomatic joints. One cat, euthanized for ethical reasons, underwent a complete post-mortem examination and was subjected to histopathological and immunohistochemical investigations. No phylogenetic subgrouping were evident for the sequenced FCV. Histopathology of the euthanized cat revealed diffuse fibrinous synovitis and osteoarthritis eight months after the onset of lameness and the first detection of FCV RNA, supporting the hypothesis of a persistent infection. FCV was demonstrated by immunohistochemistry in synoviocytes and fibroblasts of the synovial membranes. This study provides new data on the occurrence of polyarthritis in FCV-infected cats, demonstrates by immunohistochemistry the presence of FCV in the synovial membranes of a cat with persistent polyarthritis and supports the absence of correlation between limping syndrome and phylogenetic subgrouping of viruses
The invasion history of Elodea canadensis and E. nuttallii (Hydrocharitaceae) in Italy from herbarium accessions, field records and historical literature
We analysed the invasion history of two North American macrophytes (Elodea canadensis and E. nuttallii) in Italy, through an accurate census of all available herbarium and field records, dating between 1850 and 2019, and a rich literature collection describing the initial introduction and naturalisation phase that supports the results obtained by the occurrence records. Elodea canadensis arrived in Italy before 1866 and had two invasion phases, between the 1890s and 1920s and between the 1990s and 2000s; E. nuttallii, probably arrived in the 1970s, started invading in 2000 and the invasion is still ongoing. Botanical gardens and fish farming played a crucial role in dispersal and naturalisation of both species. The current invasion range of both species is centred in northern Italy, with scattered occurrences of E. canadensis in central and southern regions. River Po represents a dispersal barrier to the Mediterranean region and a strategic monitoring site to prevent the invasion in the peninsula. The study detects differences in the niches of the two species during the introduction and naturalisation phase and a habitat switch occurred after 1980 in E. canadensis and after 2000 in E. nuttallii, during their expansion phases. For E. canadensis the switch corresponds to the second invasion round. Further research can clarify whether the second invasion round is due to confusion of the recently introduced E. nuttallii with E. canadensis, to a cryptic introduction of a new genotype, to post-introduction evolution, or just to an increased scientific interest in biological invasions
Invasion trends of aquatic Ludwigia hexapetala and L. peploides subsp. montevidensis (Onagraceae) in Italy based on herbarium records and global datasets
Identifying areas susceptible to invasion by an alien species is a strategy of prevention. We used national herbaria and global databases to assess the invasion trends of the two aquatic invasive species Ludwigia hexapetala and Ludwigia peploides subsp. montevidensis in Italy. We defined the invasion status with invasion curves and predicted potentially suitable areas with Species Distribution Models based on WorldClim variables and the human footprint index. Low seasonal variation in temperature and precipitation, temperature ≥ 20 °C in the driest period of the year and low precipitation in the coldest period are the bioclimatic factors that most account for the potential distribution of the two species. The human footprint has a lower relative importance than bioclimatic variables. All Italian peninsula appears as a suitable bioclimatic environment for the invasion of the two Ludwigia species, with over 90% of areas with high suitability lying below 600 m altitude. Only mountain regions and the islands appear less suitable. The agricultural land at the foothill of the Appennine in the Mediterranean region is the most vulnerable to the invasion. Considering the trend of the invasion curves, which have been sharply rising for the latest decades, there are reasons to expect that the alien Ludwigia species will continue their expansion, if no timely and effective actions are taken. Informative campaigns, accurate monitoring and prompt management are fundamental preventive tools in areas predicted as vulnerable to invasion by this study
Invasion trends of aquatic Ludwigia hexapetala and L. peploides subsp. montevidensis (Onagraceae) in Italy based on herbarium records and global datasets
Identifying areas susceptible to invasion by an alien species is a strategy of prevention. We used national herbaria and global databases to assess the invasion trends of the two aquatic invasive species Ludwigia hexapetala and Ludwigia peploides subsp. montevidensis in Italy. We defined the invasion status with invasion curves and predicted potentially suitable areas with Species Distribution Models based on WorldClim variables and the human footprint index. Low seasonal variation in temperature and precipitation, temperature ≥ 20 °C in the driest period of the year and low precipitation in the coldest period are the bioclimatic factors that most account for the potential distribution of the two species. The human footprint has a lower relative importance than bioclimatic variables. All Italian peninsula appears as a suitable
bioclimatic environment for the invasion of the two Ludwigia species, with over 90% of areas with high suitability lying below 600 m altitude. Only mountain regions and the islands appear less suitable. The agricultural land at the foothill of the Appennine in the Mediterranean region is the most vulnerable to the invasion. Considering the trend of the invasion curves, which have been sharply rising for the latest decades, there are reasons to expect that the alien Ludwigia species will continue their expansion, if no timely and effective actions are taken. Informative campaigns, accurate monitoring and prompt management are fundamental preventive tools in areas predicted as vulnerable to invasion by this study
Specie esotiche invasive di rilevanza unionale in Italia: aggiornamenti e integrazioni
La Commissione Europea (CE) ha inserito ad oggi 36 taxa esotici vegetali nella lista delle specie esotiche invasive di rilevanza unionale ai sensi del Regolamento (UE) n. 1143/2014 del Parlamento Europeo e del Consiglio, recante disposizioni volte a prevenire e gestire l’introduzione e la diffusione delle specie esotiche invasive. La lista delle specie di rilevanza unionale viene periodicamente aggiornata e include quelle specie che rappresentano una grave minaccia per la biodiversità, ma anche per la salute dei cittadini e le attività economiche nei territori dell’Unione Europea e che necessitano di una gestione concertata a livello comunitario. La CE vigila sullo stato di ogni taxon grazie anche a periodiche rendicontazioni da parte dei paesi dell'Unione. In vista di tali report, tra il 2020 e il 2021 è stata definita e integrata la distribuzione di queste specie in Italia
Cereali selvatici a Takarkori, sito del Tadrart Acacus – Sahara libico: schede di alcuni macroresti da uno spot dell’Olocene medio.
Il lavoro presenta una serie di tavole descrittive di alcuni reperti mummificati di Paniceae provenienti dal riparo sotto roccia di Takarkori. Il sito archeologico è ubicato nell’area più meridionale del Tadrart Acacus libico, un massiccio montuoso del Sahara centrale, al confine tra Libia e Algeria sudoccidentale. Le schede realizzate, utili per le determinazioni nelle future analisi archeobotaniche nell’area, si riferiscono a sei generi/specie di Paniceae, che includono tra l’altro cereali selvatici ancora oggi raccolti in aree sahariane e saheliane: Echinochloa colona, Panicum sp., Dactyloctenium
aegyptium, Urochloa panicoides, Brachiaria sp., e B. leersioides