4 research outputs found

    ЭвристичСская модСль ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Ρ†ΠΈΠΈ рСлигиозности ΠΈ ΡΠΎΡ†ΠΈΠ°Π»ΡŒΠ½ΠΎ-психологичСской Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΈ

    Get PDF
    Introduction. The relationship between religiosity and adaptation is an important issue in the psychology of religion. The present study introduces a heuristic model integrating these phenomena. The model components are organized in a two-dimensional space, where extreme points indicate the intensity of the phenomena. The study revealed four types of relationship: (1) external religiousness – adaptation, (2) external religiosity – desadaptation, (3) internal religiousness – adaptation, and (4) internal religiousness – desadaptation. Methods. The data statistical processing included the following steps: (a) checking the adequacy of graphically presenting the model, (b) checking the hypothesis of the differentiation of adaptation strategies depending on their location on the coordinate plane of the geometric space of the model, (c) revealing the content of adaptation/desadaptation variables. Results. The adequacy of graphically presenting the constructed model gained empirical confirmation. Combinations of the parameters of adaptation/desadaptation and external/internal religiosity led to specific behavior types. Desadaptation resulted from external religiosity and the adaptation strategy of β€œleaving the environment and searching for a new one”, without the desire for change in the environment or self-changing. Adequate responses to changes in the environment led to adaptation. However, religion did not characterize the individual’s adaptation. Discussion. The presented model can be a form of cognitive scheme which simplifies the internal processing of life experience. The paper describes prospects for further research.Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ прСдставлСно Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ психологии Ρ€Π΅Π»ΠΈΠ³ΠΈΠΈ – взаимосвязи рСлигиозности ΠΈ Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΈ личности. Новизна авторского Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² создании ΠΈ эмпиричСской Π°ΠΏΡ€ΠΎΠ±Π°Ρ†ΠΈΠΈ эвристичСской ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Ρ†ΠΈΠΈ этих Ρ„Π΅Π½ΠΎΠΌΠ΅Π½ΠΎΠ². Π‘ΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΠ΅ модСль ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ‹ ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΎΠ²Π°Π½Ρ‹ Π² Π΄Π²ΡƒΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΊΡ€Π°ΠΉΠ½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ ΠΈΠ½Ρ‚Π΅Π½ΡΠΈΠ²Π½ΠΎΡΡ‚ΡŒ проявлСния Ρ„Π΅Π½ΠΎΠΌΠ΅Π½ΠΎΠ². Авторами описаны Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Π΅ взаимосвязи: «внСшняя Ρ€Π΅Π»ΠΈΠ³ΠΈΠΎΠ·Π½ΠΎΡΡ‚ΡŒ – Π°Π΄Π°ΠΏΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΒ», «внСшняя Ρ€Π΅Π»ΠΈΠ³ΠΈΠΎΠ·Π½ΠΎΡΡ‚ΡŒ – Π΄Π΅Π·Π°Π΄Π°ΠΏΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΒ», «внутрСнняя Ρ€Π΅Π»ΠΈΠ³ΠΈΠΎΠ·Π½ΠΎΡΡ‚ΡŒ – Π°Π΄Π°ΠΏΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΒ», «внутрСнняя Ρ€Π΅Π»ΠΈΠ³ΠΈΠΎΠ·Π½ΠΎΡΡ‚ΡŒ – Π΄Π΅Π·Π°Π΄Π°ΠΏΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΒ».        ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π’ Π΄Π°Π½Π½ΠΎΠΌ Ρ€Π°Π·Π΄Π΅Π»Π΅ описаны основныС, примСняСмыС Π² исслСдовании ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹, Π° Ρ‚Π°ΠΊΠΆΠ΅ этапы статистичСской ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π΄Π°Π½Π½Ρ‹Ρ… исслСдования. Π­Ρ‚Π°ΠΏΡ‹ Π²ΠΊΠ»ΡŽΡ‡Π°Π»ΠΈ Π² сСбя ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΡƒ адСкватности графичСского прСдставлСния ΠΌΠΎΠ΄Π΅Π»ΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΡƒ Π³ΠΈΠΏΠΎΡ‚Π΅Π·Ρ‹ ΠΎ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Ρ†ΠΈΠΈ стратСгий Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΈ Π² зависимости ΠΎΡ‚ ΠΈΡ… располоТСния ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ осСй ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ плоскости, ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… гСомСтричСскоС пространство ΠΌΠΎΠ΄Π΅Π»ΠΈ. ΠžΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹ΠΉ этап статистичСской ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΠΎΠ΄Ρ€Π°Π·ΡƒΠΌΠ΅Π²Π°Π» выявлСниС ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ наполнСния ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… Β«Π°Π΄Π°ΠΏΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΒ»/Β«Π΄Π΅Π·Π°Π΄Π°ΠΏΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΒ». Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π”Π°Π½Π½Ρ‹ΠΉ Ρ€Π°Π·Π΄Π΅Π» Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ описаниС ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π² Ρ…ΠΎΠ΄Π΅ эмпиричСского исслСдования Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ². ЭмпиричСски ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½Π° Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Π½ΠΎΡΡ‚ΡŒ графичСского прСдставлСния конструируСмой ΠΌΠΎΠ΄Π΅Π»ΠΈ. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ спСцифичСскиС способы повСдСния, ΠΏΠΎΡ€ΠΎΠΆΠ΄Π°Π΅ΠΌΡ‹Π΅ сочСтаниСм ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² «адаптивности»/«дСзадаптивности» ΠΈ «внСшнСй»/Β«Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΉΒ» рСлигиозности. Π”Π΅Π·Π°Π΄Π°ΠΏΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ складываСтся ΠΈΠ· Ρ‚Π°ΠΊΠΈΡ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ², ΠΊΠ°ΠΊ «внСшняя Ρ€Π΅Π»ΠΈΠ³ΠΈΠΎΠ·Π½ΠΎΡΡ‚ΡŒΒ» ΠΈ стратСгии Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΈ Β«ΡƒΡ…ΠΎΠ΄ ΠΈΠ· срСды ΠΈ поиск Π½ΠΎΠ²ΠΎΠΉΒ», ΠΏΡ€ΠΈ отсутствии стрСмлСния ΠΊ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΌΡƒ измСнСнию срСды ΠΈΠ»ΠΈ сСбя. ΠΠ΄Π°ΠΏΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ складываСтся ΠΈΠ· Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ рСагирования Π½Π° ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ срСды. Π Π΅Π»ΠΈΠ³ΠΈΠΎΠ·Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ этом Π½Π΅ являСтся характСристикой адаптивности личности. ΠžΠ±ΡΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ². Π’ Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠΈ дСлаСтся Π²Ρ‹Π²ΠΎΠ΄ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Π½ΡƒΡŽ модСль ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ ΠΊΠ°ΠΊ Ρ€Π°Π·Π½ΠΎΠ²ΠΈΠ΄Π½ΠΎΡΡ‚ΡŒ ΠΊΠΎΠ³Π½ΠΈΡ‚ΠΈΠ²Π½ΠΎΠΉ схСмы, ΡƒΡΠΊΠΎΡ€ΡΡŽΡ‰Π΅ΠΉ ΠΈ ΡƒΠΏΡ€ΠΎΡ‰Π°ΡŽΡ‰Π΅ΠΉ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΡŽΡŽ ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚ΠΊΡƒ ΠΆΠΈΠ·Π½Π΅Π½Π½ΠΎΠ³ΠΎ ΠΎΠΏΡ‹Ρ‚Π°. ΠžΠΏΠΈΡΠ°Π½Ρ‹ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Π΅ пСрспСктивы Π΄Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠΈΡ… исслСдований Π² этом Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ

    Bioprinting of functional vascularized mouse thyroid gland construct.

    No full text
    Bioprinting can be defined as additive biofabrication of 3D tissues and organ constructs using tissue spheroids, capable of self-assembly, as building blocks. Thyroid gland, a relatively simple endocrine organ, is suitable for testing the proposed bioprinting technology. Here we report the bioprinting of functional vascularized mouse thyroid gland construct from embryonic tissue spheroids as a proof of concept. Based on the self-assembly principle, we generated thyroid tissue starting from thyroid spheroids (TS) and allantoic spheroids (AS), as a source of thyrocytes and endothelial cells (EC), respectively. Inspired by mathematical modelling of spheroid fusion, we used an original 3D bioprinter to print TS in close association with AS within collagen hydrogel. During the culture, closely placed embryonic tissue spheroids fused into a single integral construct, endothelial cells from AS invaded and vascularized TS, and epithelial cells from the TS progressively formed follicles. In this experimental setting, we observed formation of capillary network around follicular cells, as observed during in utero thyroid development when thyroid epithelium controls the recruitment, invasion and expansion of EC around follicles. To prove that EC from AS are responsible for vascularization of thyroid gland construct, we depleted endogenous EC from thyroid spheroids before bioprinting. EC from allantoic spheroids completely revascularized depleted thyroid tissue. Cultured bioprinted construct was functional as it could normalize blood thyroxin levels and body temperature after grafting under the kidney capsule of hypothyroid mice. Bioprinting of functional vascularized mouse thyroid gland construct represents further advance in bioprinting technology exploring self-assembling properties of tissue spheroids

    Bioprinting of a functional vascularized mouse thyroid gland construct

    No full text
    Bioprinting can be defined as additive biofabrication of 3D tissues and organ constructs using tissue spheroids, capable of self-assembly, as building blocks. Thyroid gland, a relatively simple endocrine organ, is suitable for testing the proposed bioprinting technology. Here we report the bioprinting of functional vascularized mouse thyroid gland construct from embryonic tissue spheroids as a proof of concept. Based on the self-assembly principle, we generated thyroid tissue starting from thyroid spheroids (TS) and allantoic spheroids (AS), as a source of thyrocytes and endothelial cells (EC), respectively. Inspired by mathematical modelling of spheroid fusion, we used an original 3D bioprinter to print TS in close association with AS within collagen hydrogel. During the culture, closely placed embryonic tissue spheroids fused into a single integral construct, endothelial cells from AS invaded and vascularized TS, and epithelial cells from the TS progressively formed follicles. In this experimental setting, we observed formation of capillary network around follicular cells, as observed during in utero thyroid development when thyroid epithelium controls the recruitment, invasion and expansion of EC around follicles. To prove that EC from AS are responsible for vascularization of thyroid gland construct, we depleted endogenous EC from thyroid spheroids before bioprinting. EC from allantoic spheroids completely revascularized depleted thyroid tissue. Cultured bioprinted construct was functional as it could normalize blood thyroxin levels and body temperature after grafting under the kidney capsule of hypothyroid mice. Bioprinting of functional vascularized mouse thyroid gland construct represents further advance in bioprinting technology exploring self-assembling properties of tissue spheroids

    Discovery of Novel Highly Potent Hepatitis C Virus NS5A Inhibitor (AV4025)

    No full text
    A series of next in class small-molecule hepatitis C virus (HCV) NS5A inhibitors with picomolar potency containing 2-pyrrolidin-2-yl-5-{4-[4-(2-pyrrolidin-2-yl-1<i>H</i>-imidazol-5-yl)Β­buta-1,3-diynyl]Β­phenyl}-1<i>H</i>-imidazole cores was designed based on the SAR studies available for the reported NS5A inhibitors. Compound <b>13a</b> (AV4025), with (<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>)-stereochemistry (EC<sub>50</sub> = 3.4 Β± 0.2 pM, HCV replicon genotype 1b), was dramatically more active than were the compounds with two (<i>S</i>)- and two (<i>R</i>)-chiral centers. Human serum did not significantly reduce the antiviral activity (<4-fold). Relatively favorable pharmacokinetic features and good oral bioavailability were observed during animal studies. Compound <b>13a</b> was well tolerated in rodents (in mice, LD<sub>50</sub> = 2326 mg/kg or higher), providing a relatively high therapeutic index. During safety, pharmacology and subchronic toxicity studies in rats and dogs, it was not associated with any significant pathological or clinical findings. This compound is currently being evaluated in phase I/II clinical trials for the treatment of HCV infection
    corecore