45 research outputs found

    On extreme field limits in high power laser matter interactions: radiation dominant regimes in high intensity electromagnetic wave interaction with electrons

    Full text link
    We discuss the key important regimes of electromagnetic field interaction with charged particles. Main attention is paid to the nonlinear Thomson/Compton scattering regime with the radiation friction and quantum electrodynamics effects taken into account. This process opens a channel of high efficiency electromagnetic energy conversion into hard electromagnetic radiation in the form of ultra short high power gamma ray flashes.Comment: 15 pages, 10 figures, invited talk presented at the SPIE-2013 conference, Prague, Czech Republic, Apr. 15, 201

    A compact, all-optical positron production and collection scheme

    Full text link
    In this paper we discuss a compact, laser-plasma-based scheme for the generation of positron beams suitable to be implemented in an all-optical setup. A laser-plasma-accelerated electron beam hits a solid target producing electron-positron pairs via bremsstrahlung. The back of the target serves as a plasma mirror to in-couple a laser pulse into a plasma stage located right after the mirror where the laser drives a plasma wave (or wakefield). By properly choosing the delay between the laser and the electron beam the positrons produced in the target can be trapped in the wakefield, where they are focused and accelerated during the transport, resulting in a collimated beam. This approach minimizes the ballistic propagation time and enhances the trapping efficiency. The system can be used as an injector of positron beams and has potential applications in the development of a future, compact, plasma-based electron-positron linear collider

    On the breaking of a plasma wave in a thermal plasma: I. The structure of the density singularity

    Full text link
    The structure of the singularity that is formed in a relativistically large amplitude plasma wave close to the wavebreaking limit is found by using a simple waterbag electron distribution function. The electron density distribution in the breaking wave has a typical "peakon" form. The maximum value of the electric field in a thermal breaking plasma is obtained and compared to the cold plasma limit. The results of computer simulations for different initial electron distribution functions are in agreement with the theoretical conclusions.Comment: 21 pages, 12 figure

    Lorentz-Abraham-Dirac vs Landau-Lifshitz radiation friction force in the ultrarelativistic electron interaction with electromagnetic wave (exact solutions)

    Full text link
    When the parameters of electron - extreme power laser interaction enter the regime of dominated radiation reaction, the electron dynamics changes qualitatively. The adequate theoretical description of this regime becomes crutially important with the use of the radiation friction force either in the Lorentz-Abraham-Dirac form, which possess unphysical runaway solutions, or in the Landau-Lifshitz form, which is a perturbation valid for relatively low electromagnetic wave amplitude. The goal of the present paper is to find the limits of the Landau-Lifshitz radiation force applicability in terms of the electromagnetic wave amplitude and frequency. For this a class of the exact solutions to the nonlinear problems of charged particle motion in the time-varying electromagnetic field is used.Comment: 14 pages, 5 figure

    Low transverse emittance electron bunches from two-color laser-ionization injection

    Full text link
    A method is proposed to generate low emittance electron bunches from two color laser pulses in a laser-plasma accelerator. A two-region gas structure is used, containing a short region of a high-Z gas (e.g., krypton) for ionization injection, followed by a longer region of a low-Z gas for post-acceleration. A long-laser-wavelength (e.g., 5 micron) pump pulse excites plasma wake without triggering the inner-shell electron ionization of the high-Z gas due to low electric fields. A short-laser-wavelength (e.g., 0.4 micron) injection pulse, located at a trapping phase of the wake, ionizes the inner-shell electrons of the high-Z gas, resulting in ionization-induced trapping. Compared with a single-pulse ionization injection, this scheme offers an order of magnitude smaller residual transverse momentum of the electron bunch, which is a result of the smaller vector potential amplitude of the injection pulse

    Generation of GeV protons from 1 PW laser interaction with near critical density targets

    Full text link
    The propagation of ultra intense laser pulses through matter is connected with the generation of strong moving magnetic fields in the propagation channel as well as the formation of a thin ion filament along the axis of the channel. Upon exiting the plasma the magnetic field displaces the electrons at the back of the target, generating a quasistatic electric field that accelerates and collimates ions from the filament. Two-dimensional Particle-in-Cell simulations show that a 1 PW laser pulse tightly focused on a near-critical density target is able to accelerate protons up to an energy of 1.3 GeV. Scaling laws and optimal conditions for proton acceleration are established considering the energy depletion of the laser pulse.Comment: 26 pages, 8 figure

    A Laser-Plasma Ion Beam Booster Based on Hollow-Channel Magnetic Vortex Acceleration

    Full text link
    Laser-driven ion acceleration can provide ultra-short, high-charge, low-emittance beams. Although undergoing extensive research, demonstrated maximum energies for laser-ion sources are non-relativistic, complicating injection into high-β\beta accelerator elements and stopping short of desirable energies for pivotal applications, such as proton tumor therapy. In this work, we decouple the efforts towards relativistic beam energies from a single laser-plasma source via a proof-of-principle concept, boosting the beam into this regime through only a few plasma stages. We employ full 3D particle-in-cell simulations to demonstrate the capability for capture of high-charge beams as produced by laser-driven sources, where both source and booster stages utilize readily available laser pulse parameters.Comment: 4 pages, 4 figures, submitted for peer revie
    corecore